共查询到5条相似文献,搜索用时 0 毫秒
1.
T. Joseph W. Lazio R.J. MacDowall Jack O. Burns D.L. Jones K.W. Weiler L. Demaio A. Cohen N. Paravastu Dalal E. Polisensky K. Stewart S. Bale N. Gopalswamy M. Kaiser J. Kasper 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night. 相似文献
2.
L. Czechowski J. Leliwa-Kopystyński 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Images from the Cassini mission show the existence of a long ridge on Iapetus. It extends at least 1400 km along the great circle defined by the equator. We discuss the possibility that the ridge is a result of extensional forces acting above an ascending current of solid-state convection. A two-cell pattern of convection is a reasonable explanation of the observed feature. Three scenarios of the ridge formation are proposed: spin–orbit resonance scenario, convection in low viscosity-interior scenario, and impact generating flow scenario. 相似文献
3.
P. Bobik K. Kudela B. Pastircak A. Santangelo M. Bertaina K. Shinozaki F. Fenu J. Szabelski J. Urbar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We use the CORSIKA package (Heck et al., 1998) and AMS-01 flight data (Alcaraz et al., 2000) to evaluate the distribution of secondary particles in the Earth atmosphere. Distribution covers all longitudes and latitudes of STS-91 Space Shuttle flight trajectory to Mir Space Station. Moreover distribution covers all depth in the atmosphere in the evaluated area. We show distributions for e−, e+, μ+, μ−, gammas, hadrons and Cherenkov light from primary protons and helium component of cosmic rays flux. Our results compare favorably with other estimates made by different techniques. 相似文献
4.
P.S. Sawyer H. Stephen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Recent variations in normal meteorological conditions indicate the earth’s climate is changing in ways that may impact delicate ecological balances in sensitive regions. Identifying how those changes are affecting the biosphere is essential if we are going to be able to adapt to those changes and to potentially mitigate their harmful consequences. This paper presents a time series study of an alpine ecosystem in the Big Pine Creek watershed in California’s Eastern Sierra Nevada Mountain’s. Raw Landsat data covering the years 1984 through 2011 is converted to observed surface reflectance and analyzed for trends that would indicate a change in the ecosystem. We found that over the time period of the study, observed surface reflectance shows a general decline across the spectrum while our analysis of environmental data demonstrates statistically significant increases in temperatures. While declining reflectance in the visible and short wave bands are indicators of increased surface cover, the fact that the IR band also shows declines is consistent with a decline in tree density. This study provides a useful insight into the ecological response of the Big Pine Creek watershed to recent climate change. These findings suggest that alpine ecosystems are particularly sensitive to increasing temperatures. If these results are replicated in other alpine watersheds it will demonstrate that the biosphere is already showing the effects of a warmer environment. 相似文献
5.
Anabel Alejandra Lamaro Alejandro Mariñelarena Sandra Edith Torrusio Silvia Estela Sala 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water–atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM). 相似文献