首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
    
针对机翼弹性变形对前掠翼(FSW)飞行器开裂式方向舵操纵特性的影响,基于计算流体力学/计算结构力学(CFD/CSD)松耦合静气动弹性数值计算方法,计算了亚声速条件下刚性和弹性前掠机翼开裂式方向舵的操纵特性,并分析了机翼弯扭变形对方向舵操纵特性的影响。计算结果表明,右侧开裂式方向舵打开后,与刚性翼相比,弹性翼的失速迎角提前约2°,达到最大升阻比的迎角提前约1°,小迎角时偏航作用增强,出现右滚力矩和滚转力矩"凹坑"现象,大迎角时偏航规律趋势提前约8°,滚转作用加剧;侧滑角增大时,偏航力矩减小的幅度大于刚性翼,滚转力矩完全反效;舵偏角增大时,偏航力矩的增幅小于刚性翼。经比较,在弹性变形影响下,弹性前掠翼的开裂式方向舵操纵特性与刚性前掠翼有明显区别。  相似文献   

2.
为了抑制三角翼前缘涡破裂的发生,研究了大攻角下(30°~50°)尖顶襟翼对70°三角翼前缘涡破裂的影响.在静态实验情况下,尖顶弯折对三角翼前缘涡破裂影响的参数有2个:尖顶襟翼弯折的角度及其长度.染色液流态显示结果表明:尖顶襟翼的向下弯折减小了靠近襟翼翼面的有效攻角,从而推迟了前缘涡破裂的发生,涡破裂位置随弯折角的变化呈非线性变化且弯折襟翼越长效果越好,α=35°时两个弯折组合的效果要比单个弯折的好.  相似文献   

3.
旋涡发生器对机翼最大升力和失速迎角的影响   总被引:2,自引:0,他引:2  
对一个展长为500?mm,弦长为250?mm,翼型为NACA0012的机翼模型,安装各种小三角翼旋涡发生器作低速风洞测力实验,研究小三角翼各种弯度和它与机翼的相对位置对机翼最大升力和失速迎角的影响.实验结果表明当小三角翼与机翼在某个最佳相对位置时,机翼最大升力和失速迎角有个最大的增加.当小三角翼与机翼的相对位置不变时,各种弯度的小三角翼都可以使机翼最大升力和失速迎角有较大的增加,并且相互差别不大.  相似文献   

4.
前掠翼气动布局中鸭翼高度影响的实验   总被引:2,自引:0,他引:2  
基于前掠翼-鸭式前翼布局的风洞测力实验,分析了距离主机翼较远的鸭翼相对于主机翼的高度对布局纵向气动性能的影响.基于主机翼根弦长的雷诺数约为1.44×105.实验结果表明,较大的主机翼前掠角与较低的鸭翼配合,产生的升力系数增量比较显著.低于主机翼的鸭翼将加强前掠翼布局的缓失速特性.鸭翼增大升力的同时也增大了阻力;大攻角时,鸭翼带来的阻力增量较大.高于主机翼的鸭翼对最大升阻比的改善较多,但也不宜过高.主机翼前掠角较小时,鸭翼改善和提高升阻比的效果比较明显.  相似文献   

5.
攻角拉起时前体非对称涡诱导机翼摇滚运动   总被引:1,自引:0,他引:1  
针对目前前体非对称涡诱导机翼摇滚研究时攻角往往处于静态而没有考虑攻角动态拉起的问题,在北航D4风洞中采用细长旋成体与30°后掠翼的组合体模型,通过不同拉起速度下的机翼摇滚运动实验,分析了攻角拉起速度对前体非对称涡诱导机翼摇滚运动的影响及影响产生的原因;随后通过在快速拉起摇滚运动过程中进行模型表面压力测量,研究了快速拉起机翼摇滚的流动机理.实验结果表明,由于机翼摇滚运动的时间随攻角拉起速度增加而减少,使得在3个不同的拉起速度分区内,摇滚运动呈现为不同的运动形态,其中第3个快速拉起分区内的摇滚运动为与攻角静态时完全不同的类正弦摇滚运动形态.与攻角静态时机翼摇滚的流动机理不同,快速拉起时这种类正弦摇滚运动主要源于前体非对称涡随攻角的演化,前体非对称涡随滚转角的涡型切换不再重要.   相似文献   

6.
旋转的螺旋桨滑流掠过机翼将使机翼的气动特性发生改变,在高空超长航时无人机的设计中有必要对大柔性机翼气动弹性问题的螺旋桨滑流影响进行分析.运用Prandtl修正的动量叶素理论分析螺旋桨滑流及面内载荷;采用兰金涡核模拟滑流对机翼的诱导速度;采用三维升力线方法计算机翼定常气动力,利用曲面样条插值方法解决结构/气动耦合问题,并结合非线性有限元静力学计算方法,建立了螺旋桨滑流及面内载荷作用下大柔性机翼静气动弹性问题的快速迭代求解方法.以某大展弦比螺旋桨机翼为例,采用文中所建立方法对其静气动弹性特性进行计算研究.结果表明,旋转的滑流改变了机翼绕流当地攻角,从而影响了机翼气动力和变形分布,且在小前进比时影响更大.所建立的分析方法简便高效,在初步设计阶段有较好的应用前景翼绕流当地攻角,从而影响了机翼气动力和变形分布,且在小前进比时影响更大.所建立的分析方法简便高效,在初步设计阶段有较好的应用前景.   相似文献   

7.
柔性后缘可变形机翼气动特性分析   总被引:1,自引:1,他引:1  
应用后缘主动变弯度技术的机翼能够改善飞行器的气动性能,其气动特性的研究对于未来可变形机翼的设计具有重要意义。以柔性后缘可连续变弯度二元机翼为研究对象,在Fluent计算平台上采用可压缩Navier-Stokes方程和Spalart-Allmaras(S-A)湍流模型进行气动力数值研究,从压力分布、流场结构和机翼变形方式等方面分析了可变形机翼的气动特性。数值计算结果表明,可变形机翼升力线斜率和最大升力系数与常规带简单襟翼的机翼基本一致,但失速攻角较小;在失速之前,可变形机翼具有较高的升力系数和升阻比,但同时产生较大的低头力矩。柔性后缘下偏到一定角度可以抑制后缘涡的前传,在失速后升力系数出现缓慢上升,增大了有效攻角的范围,具有较好的失速特性。   相似文献   

8.
针对弹性后掠翼飞机在使用试验气动力分析时所出现的副翼反效问题,利用遗传算法对机翼结构进行优化.弹性飞机副翼效率计算采用试验气动力.重点针对一个发生副翼反效的严重飞行状态点进行了机翼结构优化,对比分析了优化前后副翼效率、相同副翼偏度下所产生的滚转率随飞行动压的变化及颤振特性的变化.并比较了基于试验气动力的情况下只针对单一飞行攻角的优化结果和同时考虑多个飞行攻角的优化结果,分析了飞行攻角对优化结果的影响.结果证明:利用结构优化方法可有效在详细设计阶段解决弹性飞机严重飞行状态点副翼反效问题,并且优化结果对飞机颤振特性基本无影响.  相似文献   

9.
    
攻角是影响后掠机翼边界层横流稳定性的关键参数之一.以NACA0012翼型为研究对象,通过求解三维可压缩Navier-Stokes方程计算了展向无限长后掠机翼的基本流场;通过求解Orr-Sommerfeld方程得到了扰动波的中性曲线及增长率演化曲线,基于线性稳定性理论(LST)研究了攻角对后掠机翼边界层流动稳定性的影响;最后采用转捩预测eN方法进行了转捩预测.研究发现,扰动波的增长在背风面受到抑制,在迎风面受到增强;转捩首先发生在迎风面,当扰动速度为来流速度的0.05%时,转捩发生的N值在6左右,转捩发生的位置在0.1~0.2个弦长之间.  相似文献   

10.
在水槽中和风洞中分别进行了流动显示和动态测压实验,目的是研究三角翼前缘涡破裂点的脉动现象.对流动显示图片中涡的破裂点位置进行统计和频谱分析,表明破裂点振荡存在双主频特征,位于0.07位置的主频对应着螺旋—泡—螺旋的转化过程,位于0.2~0.4之间的主频对应着螺旋形态破裂本身的小幅振动.对统计的破裂点位置数据做低通滤波后进行相关性分析,还表明了三角翼左右2个前缘涡的破裂点位置信号具有负相关性.进行三角翼表面动态压力测量,对压力数据低通滤波后做相关性分析,发现相同的一条前缘涡的动态压力信号在整个翼面上都具有高度的相关性.   相似文献   

11.
微型飞行器在军、民用领域具有广阔的应用前景,柔性翼是提升微型飞行器的气动性能的有效方法。为了更好地对柔性翼进行控制,对柔性翼变形和振动特性及其对气动力的影响进行了同步测量。研究结果表明,相比于刚性翼,柔性翼使失速迎角推迟了6°,最大升力系数提升了47.4%,升阻比提高了17.8%。柔性翼的周期性振动除了迎角0°~2°呈现大振幅、小静变形特征外,振动的振幅随着迎角增加经历无明显波峰、三波峰到单波峰的转换。升力系数最大时对应的薄膜变形、振动振幅均达到最大。此外,变形最大的弦向位置随迎角的变化决定了俯仰力矩的特性。据此提出了施加弯度和特定频率的振动激励来提升气动性能的主动控制策略。   相似文献   

12.
对经典的圆柱绕流模型,运用前置隔板对流场进行控制。利用粒子图像测速(PIV)方法在自循环水槽中研究了雷诺数为1 800时,柔性和刚性2种不同刚度的前置隔板对圆柱绕流的影响。研究发现:柔性隔板自由端的弯曲增加了对流场的额外扰动,并且柔性隔板弯曲变形会诱导产生脱落涡,导致尾迹流场的主频发生变化。在圆柱下游流场,无隔板工况与柔性隔板工况的回流区长度相当,刚性隔板工况的回流区相较之下则更长。结果显示:前置隔板还能在一定程度上减小圆柱绕流的阻力。   相似文献   

13.
在二维翼型自适应的研究基础上,用Powell法优化计算了对前缘后掠角为35°,展弦比为3.9,梢根比为0.17,机翼剖面为NACA65006翼型的梯形翼的前后缘舵面偏转角,从而获得了在亚跨声速时升阻比大而在超声速时阻力系数小的自适应机翼的最优气动外形.采用了并行遗传算法,计算了要求亚跨声速升阻比大同时超声速阻力小的气动双目标优化机翼的外形.讨论了优化机翼相对于原始机翼的气动增益.与二维一样,三维数值算例也证明了自适应机翼可获得明显的气动增益.   相似文献   

14.
双三角翼飞机气动力工程计算研究   总被引:5,自引:1,他引:4  
 双三角机翼比三角机翼气动布局具有更优越的升阻特性.飞机空气动力的工程计算是用数值方法寻求飞机最优设计方案的基础.采用基于面积比思想的半经验工程算法计算了双三角翼飞机的升力系数曲线斜率、零升阻力系数和诱导阻力因子.结果经风洞试验数据校验,精度完全能满足飞机方案设计要求.算法在某改型飞机方案设计中得到了成功的应用.  相似文献   

15.
    
扇翼飞行器是一种新概念新原理飞行器,尤其是其具有独特空气动力学原理。扇翼能够同时产生升力和推力,为了进一步改善扇翼的气动特性,在不改变扇翼基本几何参数的前提下,沿机身纵向布置前后2个扇翼,组成了纵列式双扇翼飞行器。通过数值模拟的方法,计算了前后扇翼间距、高度和安装角变化时的扇翼升力和推力值,分析了前后扇翼气动特性相互影响的规律。此外还设计了纵列式双扇翼的风洞试验模型,将获得的风洞试验结果与数值计算结果进行了初步的对比验证。结果表明,在一定前后扇翼间距、高度和安装角下,纵列式双扇翼的气动力相比单个扇翼更具优势。因此,纵列式双扇翼布局的飞行器具有很好的发展前景和应用优势。  相似文献   

16.
微型飞行器的仿生力学 ——蝴蝶飞行的气动力特性   总被引:1,自引:1,他引:0  
研究一种蝴蝶(Morpho peleides)前飞时的气动力特性.在运动重叠网格上数值求解Navier-Stokes方程,对蝴蝶前飞时左、右翅膀的拍动运动以及跟随身体一起的俯仰运动进行计算.结果表明:蝴蝶主要用"阻力原理"作拍动飞行,即平衡身体重量的举力和克服身体阻力的推力均主要由翅膀的阻力提供.蝴蝶翅在下拍中产生很大的瞬态阻力(平行于拍动运动的力),对流动结构分析表明,产生此力的机制如下:每次下拍中产生了一个由前缘涡, 翅端涡及起动涡构成的强"涡环",其包含一个沿拍动方向的射流,产生此射流的反作用力即翅膀的阻力.平衡身体重量的举力主要由翅膀下拍中产生的阻力提供.上拍时(由于身体上仰,上拍实际是向后和向上拍动的),翅也产生阻力,但较下拍时小的多.平衡身体阻力的推力主要由翅膀上拍中产生的阻力提供.   相似文献   

17.
由于蝴蝶形态学上的特点(翼面宽大,展弦比小,翼型复杂)以及其特殊的飞行方式(拍动频率低,翅膀几乎垂直于身体拍动;翅膀没有翻转运动,但在翅膀拍动时身体有明显的俯仰运动和振动),蝴蝶成为探索昆虫飞行高升力机理的特殊研究对象.为了深入研究蝴蝶悬停飞行时的流场和高升力机理,设计制作一套模拟蝴蝶悬停飞行的流体力学实验模型显得尤为重要.介绍一种新设计的电控蝴蝶实验模型,该模型与真实的蝴蝶一样,包含左右翅膀和身体,并且可以实现精确定位和模拟蝴蝶不同的运动模式,包括翅膀的拍动、身体的俯仰运动和振动.研究小组应用此实验模型进行流动显示实验和PIV(Particle Image Velocimetry)实验,对蝴蝶的悬停飞行进行研究.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号