首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
控制超临界翼型边界层分离的微型涡流发生器数值模拟   总被引:1,自引:0,他引:1  
本文基于任意曲线坐标系下的雷诺平均Navier-Stokes方程和Spalart-Allmaras一方程湍流模型,采用对接拼接网格技术和多重网格加速收敛技术,对安装有叶片式微型涡流发生器的超临界机翼翼身组合体进行了数值模拟,研究了微型涡流发生器的高度和弦向安装位置对超临界机翼附面层流动控制的机理以及对超临界机翼气动性能的影响规律。  相似文献   

2.
张彦军  段卓毅  雷武涛  白俊强  徐家宽 《航空学报》2019,40(4):122429-122429
为了实现绿色航空节能减排的目标,层流设计技术成为飞行器设计者的研究热点。对于跨声速客机而言,超临界自然层流机翼设计技术将显著减小飞行阻力,提升气动性能,减少燃油消耗和污染物排放。首先,基于高精度边界层转捩预测技术耦合翼型优化设计系统,实现超临界自然层流翼型设计;经过合理的翼型配置,形成超临界自然层流机翼。转捩数值模拟分析结果表明,超临界自然层流机翼的层流流动特性良好。然后,以比例为1:10.4的试验模型在荷兰高速低湍流度风洞进行边界层转捩风洞试验,使用温度敏感材料涂层(TSP)技术拍照获得机翼表面在不同马赫数、雷诺数和迎角工况下的层流-湍流分布。最后,通过超临界自然层流机翼边界层转捩试验结果,探讨了该类型机翼的转捩特性随来流参数的变化规律,总结了超临界自然层流机翼设计的关键因素。此外,该模型也可用来验证边界层转捩预测技术在超临界、高雷诺数工况下的预测精度。  相似文献   

3.
大型飞机高速气动力关键问题解决的技术手段及途径   总被引:2,自引:0,他引:2  
大型飞机采用超临界机翼,并具有尺度大、飞行雷诺数高等特点,其研制中必须解决好高升阻比机翼、翼身组合体设计,推进系统/机体一体化设计,抖振特性、静气动弹性特性预测及超临界机翼流动控制等高速气动力问题。要解决这些关键气动力问题,必须进行一系列相关的大型高速风洞试验,以及解决相应的试验技术问题。  相似文献   

4.
空中客车的成功离不开其先进的机翼设计,其机翼由英国宇航公司负责设计和生产。空客飞机机翼先进的空气动力设计,包括尖峰后加载翼型、超临界翼型、先进跨声速机翼设计——超临界机翼设计、机翼与机身的干扰、翼梢小翼设计、增升装置设计等。  相似文献   

5.
空客公司的成功离不开其先进的机翼设计,其机翼由英国宇航公司负责设计和生产。空客飞机机翼先进的空气动力设计,包括尖峰后加载翼型、超临界翼型、先进跨声速机翼设计——超临界机翼设计、机翼与机身的干扰、翼梢小翼设计、增升装置设计,机翼低重量设计、机翼构型与载荷,详细设计,结构设计和低成本设计等。作为系列论文之一,综述A300及A310的机翼设计特点。  相似文献   

6.
本文给出了翼型和机翼跨声速绕流的Galerkin带权余数有限元解法。利用一系列适当形状的元素将计算区域离散,在元素内采用线性插值函数。对于超临界流动,文中采用了适合于有限元法的超声速上风技术,具有捕捉激波的能力。将这种技术应用于线松弛迭代解法中,在计算钝头翼型和机翼绕流时,都获得了成功。  相似文献   

7.
超临界机翼在方案设计阶段要估算机翼面积并初步确定机翼平面形状.当进入详细设计阶段时,必须仔细考虑机翼的几何参数,以便得到对于规定任务的最佳平面形状和弯扭配置.机翼设计时不能和飞机的其他部件分开进行独立考虑,但是在设计的初始阶段,只需要抓住最主要的几个机翼参数,进而在后期设计中,再详细考虑飞机方案和技术之间要涉及的全部因素.  相似文献   

8.
介绍了风洞试验中常采用的前最转捩和后最转捩的特点以及使用中的限制,通过某超临界机翼的试验与数值计算压力分布的比较,重点分析了不同位最的固定转捩对机翼压力分布的影响,并对机翼测压试验中所出现的问题做了分析。通过对高雷诺数风洞试验结果的研究,讨论了低雷诺数风洞中利用自由转捩技术模拟高雷诺数情况下机翼压力分布问题。  相似文献   

9.
颤振课题是飞机设计过程中常常遇到的一个关键技术问题。以支线客机ARJ21超临界机翼颤振特性研究为背景,在俄罗斯TsAGI的T-106风洞中完成了该复合材料机翼跨音速颤振实验,基于N-S方程和无限插值方法(TFI)生成三维贴体运动网格对超临界机翼跨音速颤振进行了并行计算。结果表明:复合材料的超临界机翼在跨音速区域具有跨音速颤振"凹坑"现象;与风洞实验结果相比,有较好的一致性,为使用超临界机翼的运输类飞机跨音速颤振特性预计提供了一定的参考。  相似文献   

10.
超临界层流机翼边界层及气动特性分析   总被引:2,自引:0,他引:2  
杨青真  张仲寅 《航空学报》2004,25(5):438-442
高空长航时无人机设计巡航状态的雷诺数较小,黏性边界层对气动特性的影响较大。详细分析了雷诺数对机翼边界层和气动力的影响,用数值方法对超临界层流机翼三维层流-转捩-湍流混合边界层特性进行了研究,分析比较了高空小雷诺数和中空大雷诺数情况下机翼三维边界层的特性,尤其是边界层转捩点位置、表面摩阻和气动特性的雷诺数效应。研究表明雷诺数对于高空无人机机翼边界层厚度、摩擦阻力和升阻比影响较大;对层流机翼的转捩点位置和升力系数影响较小;自然层流机翼技术可以应用于高空无人机设计。  相似文献   

11.
气动条带式喷丸成形技术   总被引:1,自引:1,他引:0  
提出气动条带式喷丸成形方法成形大型复杂型面机翼壁板,根据壁板外形曲面曲率和厚度分布,采用"整体分条,单条分区"的方法对壁板进行条带式喷丸成形。通过基础试验确定了壁板喷丸工艺参数,利用特征优化映射方法获得了壁板板坯几何模型,采用预应力方法提高了条带喷丸成形变形量。上述技术均在ARJ21大型超临界机翼壁板上获得了工程应用。  相似文献   

12.
介绍了风洞试验中的固定转捩形式以及使用限制,通过对某超临界机翼压力分布的试验与数值计算结果的比较,重点分析了不同位置的固定转捩对机翼压力分布的影响,并对出现的问题做了分析。  相似文献   

13.
本文介绍了FL一2风洞超临界翼型半模抖振实验情况,给出了实验结果。对两副超临界机翼的翼身组合体半模型进行了抖振测力试验,增压抖振测力,流谱观察。使用翼尖加速度计、翼根弯矩采样信号和拐点法获得了两副超临界机翼的翼身组合体的初始抖振攻角。  相似文献   

14.
本文用保角转绘加剪切变换生成三维机翼与翼身组合体C-H型网格,并在这类网格拓扑上,用有限体积法研制出可供分析机翼与翼身组合体绕流的三维欧拉方程计算程序。本方法的特色是改进了机翼表面网格点的分布,使机翼后缘与网格线一致;采用了当量机身,使机岙表面到对称面光滑过渡;嵌入了边界层粘性修正。改善了计算结果。数值计算表明,对粘性影响较大的超临界绕流,边界层修正效果显著。  相似文献   

15.
以某机翼结构设计研制为实例,简述了机翼结构设计研究中的主要工作和采用的设计技术、设计方法、设计手段,以及所取得的技术成果和达到的技术水平。  相似文献   

16.
以Takanashi提出的三维机翼设计理论为基础,研究与发展了一个基于欧方程和“正-反迭代、余量修正原理”的机翼设计方法。用改进的无限插值方法生成绕机翼的O-O贴体网格,采用三维欧拉方程作为充动分析计算的基本方程,该设计方法已用于某无人机机翼和一个超临界机翼设计,设计结果达到了预期的目标。  相似文献   

17.
大攻角机翼的气动弹性计算方法   总被引:2,自引:0,他引:2  
 本文利用大攻角带分离流机翼的完全非定常非线性气动力计算方法,通过与机翼运动方程的同时求解,在时间域内实现了大攻角机翼非线性气动弹性的数值模拟,根据弹性机翼各种状态下的运动过程,可以得到大攻角机翼的颤振速度等重要参数以及亚临界、超临界等飞行状态的运动规律。算例结果表明,大攻角下机翼的气动弹性问题需引起足够的重视。  相似文献   

18.
CJ818的超临界机翼设计主要分为以下几个步骤:选定机翼的平面形状,主要包括确定机翼面积、翼根弦长、根梢比、1/4弦线后掠角、前缘后掠角等;在诱导阻力最小的原则下,把三维机翼的设计升力系数转化为二维翼型的设计升力系数;根据机翼装载和结构设计的需要,确定配置翼型厚度沿展向的分布,根据飞机的巡航失速特性,初步确定配置翼型沿展向的扭转角分布;确定控制翼型个数,优化选择出满足要求的翼型;最后在CATIA里完成三维机翼的外形设计。对设计完的机翼,利用ICEM对其网格划分,并进行CFD数值计算,分析表面压力分布,对扭角分布和翼型进行优化,最终完成三维机翼的巡航外形设计。  相似文献   

19.
超临界机翼介质阻挡放电等离子体流动控制   总被引:3,自引:2,他引:3  
张鑫  黄勇  王勋年  王万波  唐坤  李华星 《航空学报》2016,37(6):1733-1742
为了进一步提高等离子体激励器可控雷诺数,采用测力以及粒子图像测速(PIV)等研究方法,从二维机翼到三维半模,从低雷诺数到高雷诺数,开展了对称布局式介质阻挡放电(DBD)等离子体激励器控制超临界机翼气动特性的试验研究,分析了控制机理,实现了等离子体"虚拟舵面"的功能。结果表明:在雷诺数为2×106的情况下,对称布局式等离子体气动激励能较好地抑制超临界机翼绕流流场分离,使失速迎角推迟2°,最大升力系数提高8.98%。  相似文献   

20.
自适应机翼是戴姆勒·奔驰宇航公司和德国宇航研究院正在进行的一个重要研究项目,旨在提高客机的性能和节省燃油。飞机上即使小的表面不规则也会引起气流扰动,增加阻力和燃油消耗,机翼中的小孔可消除气流的扰动。在飞行中,自适应机翼可通过改变弯度改变它们的形状,这种适应性可使飞机的性能与不同的飞行条件相匹配。采用自适应机翼技术以后,只需要设计一对机翼就可用于一个飞机系列内不同尺寸的飞机,从而降低了制造费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号