首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Asteroid exploration provides a new approach to study the formation of the solar system and the planetary evolution. Choosing a suitable target and designing of feasible profile for asteroid mission are challenging due to constraints such as scientific value and technical feasibility. This paper investigates a feasible mission scenario among the potential candidates of multiple flybys and sample return missions. First, a group of potential candidates are selected by considering the physical properties and accessibility of asteroids, for the sample return missions. Second, the feasible mission scenarios for multiple flybys and sample return missions to various spectral-type asteroids are investigated. We present the optimized design of preliminary interplanetary transfer trajectory for two kinds of missions. One is the single sample return mission to asteroids with various spectral types. The other is the multiple flybys and sample return mission to several asteroids. In order to find the optimal profiles, the planetary swing-by technique and Differential Evolution algorithm are used.  相似文献   

2.
As an important milestone in the exploration of Mars and small bodies, a new generation space vehicle “Phobos-Grunt” is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around a Phobos sample return mission and follow up missions targeted to study some main asteroid belt bodies, NEOs and short period comets. The principal constraint is use of the “Soyuz-Fregat” rather than the “Proton” launcher to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the mission's energetic capabilities, as well as highly autonomous on-board systems. Basic criteria underlining the “Phobos-Grunt” mission scenario, scientific objectives and rationale including Mars observations during the vehicle's insertion into Mars orbit and Phobos approach maneuvers, are discussed and an opportunity for international cooperation is suggested.  相似文献   

3.
Sample return from small solar system objects is playing an increasingly important part in solar system exploration. Critical to such missions is a robust, simple, and economic sample collector. We have developed a collector such as this for near-Earth asteroid sample return missions that we have termed the Touch-and-Go Impregnable Pad (TGIP). The collector utilizes a silicone substrate that is pushed into the dust and gravel surface layer of the asteroid. As part of a systematic evaluation of the TGIP, we have investigated the resilience of this substrate to ionizing radiations. Several miniature versions of the collector, containing typically ∼3 g of the collection substrate, were exposed to 0.564 MeV beta particles from a 90Sr source and a 6 MeV electron beam in a linear accelerator to simulate the wide range of energies of solar and galactic ionizing radiation. Various radiation levels up to eight times greater than expected on a six-year asteroid mission (in the case of beta radiation) and 50 times greater than expected (in the case of the 6 MeV electron radiation) were administered to the substrate. After irradiation, the efficiency of the substrate in collecting samples of mock regolith was compared with that of collectors that had not been irradiated. No difference beyond experimental uncertainty was observed and we suggest that the operational TGIP will not be affected adversely by radiation doses expected during a typical six-year inner solar system mission.  相似文献   

4.
Laboratory impact tests have been performed on experimental versions of a proposed robotic sample collector for extraterrestrial samples. The collector consists of a retractable aluminum ring containing an impregnable silicone compound that is pressed into the surface of the body to be sampled. As part of a comprehensive program to evaluate this idea, we have performed tests to determine if the samples embedded in the collector medium can survive the impact forces experienced during direct reentry, such as that of the recent Genesis sample return mission. For the present study, samples of sand, rock, glass, and chalk were subjected to decelerations of 1440–2880 g using drop tests. We found that even the most fragile samples, chosen to be representative of a wide range of the types of materials found on the surface of asteroids that have currently been studied, can withstand impacts of the intensity experienced by a sample return capsule during direct reentry.  相似文献   

5.
Sample return is playing an increasingly important role in solar system exploration. Among the possible mission on the horizon, are sample return from asteroids, comets, the Moon and Mars. A collector initially intended for near-Earth asteroids is the touch-and-go-impregnable-pad (TGIP). Here we explore the effect of temperature on its collection capabilities. Temperatures expected on near-Earth asteroid mission targets range from −43 to 36 °C. Experiments were conducted at −75, −50, −25, 23, 65, and 105 °C. It was found that the mass of sample collected by the TGIP increased almost linearly to 23 °C and then leveled off at higher temperatures. We also found that the collector did not lose its ability to collect samples after being subjected to −75 °C temperatures (essentially frozen) and then thawed. These experiments have shown that the TGIP can operate effectively at temperatures expected on near-Earth asteroids, especially if collection is performed on the sunward side of the asteroid.  相似文献   

6.
A tethered asteroid sample and mooring system is investigated in this paper. In this system the spacecraft is moored to the surface of an irregular asteroid such as 216 Kleopatra by using a rocket-propelled anchor with a cable. The rocket-propelled anchor is a kind of space penetrator, which can inject into asteroids at high speeds generated by its own rocket engine. It can be used to explore the interior structure of asteroids, and it can also be used as a sample collector. When the sampling mission is done, the sample can be pulled back to the spacecraft with the anchor. Using this method, the spacecraft can be kept in a safe region in which it cannot be trapped by the gravitational field of the asteroid. This work is concerned with the dynamics of the tethered system near irregular asteroids. First, a shape model and gravitational field model of irregular asteroids are built. Then, the configuration and the stability of the tethered system are investigated, and the quasi-periodic motion near the equilibrium point of the tethered system is analyzed. Finally, the non-uniform density distribution of the asteroids is considered. The deployment process and the oscillation of the tethered system in the uncertain asteroid gravity field are simulated using the Monte Carlo method. The feasibility of the tethered asteroid sample and mooring system is proved.  相似文献   

7.
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号