首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
武昌上空Es—s的形态与出现规律   总被引:1,自引:1,他引:0  
本文对武昌上空电离层E_s-s的形态与出现规律进行了考察与统计分析。 该地区的E_s-s描迹清晰、出现频繁.表明E_s-s既不单是磁扰的伴随现象,也不仅为极光地带与地磁赤道地区所特有。 该地区的E_s-s多出现于磁静日的白天.其出现率分别于地方时间九、十点(对于日变化)和夏季月份(对于年变化)达到最大;对于这一特征,既看不出地磁变化的影响,也看不出太阳活动的控制。  相似文献   

2.
本文揭示和研究了武昌上空电离层频高图中的Lacuna现象, 这次现象除具有一般Lacuna现象的主要特征外, 显著的不同之处是出现在地磁活动较低的日子.同时研究了Lacuna出现当天的一些异常情况.几个罕见现象集中于一天之内, 可能有其偶然性, 但由此至少提示了这样一点, 即在磁静日特殊事件易于探测, 容易辨认.   相似文献   

3.
对印度Trivandrum站第21太阳活动周内地磁H分量分析表明,不仅在磁扰日及其随后的静日内,强磁扰对赤道电集流有显着作用,即使在持续静日期间,较弱的磁扰仍然对赤道电离层有很大影响。磁静日昏侧出现反向(西向)电集流是正常现象,弱磁扰是使此反向电流消失的可能机制。   相似文献   

4.
本文用EISCAT雷达的综合资料,分析了磁静条件下极光区电离层的季节、昼夜变化,与磁扰时的特殊形态进行了比较,讨论了磁层-电离层耦合对电离层形态的影响.  相似文献   

5.
本文利用100kHz的低频无线电波资料,计算分析了1986—1987年期间,几种不同磁扰情况下,低纬地区夜间电离层中100km以下区域积分电子浓度及其变化的起因.结果表明:该区域电子浓度的变化与地磁扰动关系密切.在磁静日期间,其值较小,且随磁扰而变化,但比磁扰滞后1到2天.在磁暴后,其值较大,会出现几次剧烈起伏.该区域积分电子浓度的起伏可大于一个量级.沉降电子产生的动致辐射可能是引起该区域电子浓度变化的主要原因之   相似文献   

6.
利用2002年2月至2007年12月(第23太阳活动周的下降段)近6年的海南DPS-4型电离层测高仪探测数据, 对磁扰和磁静夜晚期间扩展F起始时间出现率进行统计研究. 结合海南电离层观测站所观测到的扩展F类型, 将扩展F区分为频率型、区域型、混合型和强区域型, 分别进行统计分析. 结果表明, 无论磁扰还是磁静夜晚, 混合型扩展F起始时间总出现率最高, 最为活跃, 其次为频率型和强区域型扩展F, 最不活跃的是区域型扩展F; 无论在磁扰还是在磁静夜晚条件下, 混合扩展F起始时间主要围绕在午夜前后, 且磁静时更多地起始于午夜前, 而磁扰时则倾向于延至午夜后, 频率型扩展F在午夜后较高, 而强区域型扩展F则在午夜前较高. 在本次太阳活动下降阶段, 强区域型与区域型扩展F的起始时间出现率逐年与太阳活动呈现一定的相关性. 所得结果有助于分析不同类型扩展F在形态和机制方面的差异.   相似文献   

7.
武昌哨声的传播特征及其与地磁活动的相关   总被引:1,自引:0,他引:1  
本文利用武昌(磁纬19.2°N)连续三年的哨声观测资料,研究了武昌地区哨声传播的一般特征。着重对武昌哨声的传播路径进行了分析推断,并讨论了它们与地磁活动的相关特性。发现:武昌哨声的显著特征是色散与电离层f0F2有明显的正相关关系;其次常出现一类色散值稳定、出现率也很高的哨声。此外,对典型事件的分析及统计分析都表明武昌哨声出现率在地磁扰动时明显增高;哨声色散在磁暴急始后不久即有一个急剧的上升,上升幅度达18%至37%。   相似文献   

8.
同步卫星讯号显示的电离层闪烁特性   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用1983年5—8月,1984年5—12月在武昌(114.4°E,30.6°N)对日本ETS-Ⅱ卫星(130.0°E)发出的136.1124MHz讯号的观测资料进行了统计分析。结果表明:(1)武昌电离层闪烁不但有日变化,而且有季变化。每年5—7月为闪烁最大活动期,在这些月份的夜间常出现法拉弟旋转角类波扰动伴随有强闪烁现象。武昌电离层闪烁是属于中纬闪烁型;(2)闪烁指数与法拉弟旋转角起伏密切相关,它们出现率之间的相关系数为0.8以上;夜间闪烁与扩展F层,白天闪烁与突发E层出现率之间的相关系数分别为0.6和0.55。   相似文献   

9.
本文对1983年满州里(磁纬38.07°)的测高仪资料和子午仪卫星资料进行了处理.前者主要是对F2层临界频率f0F2,而后者是对微分多普勒的总含量NT进行分析.得到满州里上空电离层之平均特性,以及磁暴期间电离层的一些异常变化.结果发现,满州里电离层的平均特性具有典型的季节异常,且f0F2和NT的变化呈现较好的一致性.满州里上空电离层的扰动大都发生在两分点季和冬季,且正相大多发生在冬季,双相大多发生在两分点季,负相大多发生在夏季和两分点季.得出1983年满州里暴时NT和f0F2相对于月中值偏移量的均方根值δNT和δf0F2都与磁Ap指数均方根值δAp之间存在一元线性相关.   相似文献   

10.
本文利用漠河(磁径190°17′E, 磁纬42°18′N)地区接收的哨声和同时观测的电离层资料, 采用南北半球电子浓度不一定对称的假设, 以电离层垂测资料和哨声联合换算的模式法, 得到了1981年7月31日哨声色散常数的日食效应;并粗略地测定了日食期间, 漠河上空沿磁力线分布的电子浓度剖面, 磁通量管电子含量和等效标高的部分结果;此外, 还初步讨论了日食的外电离层效应.   相似文献   

11.
汪领  尹凡 《空间科学学报》2020,40(6):1014-1023
利用Swarm卫星2015年1月1日至2019年12月31日的50Hz高频磁场数据,根据阈值判断垂直于主磁场方向的扰动,对磁纬45°N-45°S之间的小尺度电离层行扰事件进行探测.为避免混淆而产生的干扰,可以根据阈值判断平行于主磁场方向是否发生扰动,从而排除典型的赤道等离子体泡事件.但对于较弱的赤道等离子体泡事件,扰动阈值判断无效.为避免弱赤道等离子体泡事件的污染,根据小尺度电离层行扰事件和赤道等离子体泡事件在不同参数空间中的密度分布差异,利用基于密度的聚类算法将赤道等离子体泡事件进一步甄别提取.结果表明,聚类算法能够有效地将赤道等离子体泡事件从小尺度电离层行扰事件中甄选出来,并使小尺度电离层行扰事件聚类与赤道等离子体泡事件聚类形成清晰的边界.由聚类算法导出的弱赤道等离子体泡事件主要分布在磁纬15°N-15°S,地理经度20°-60°W,月份10至3月之间,并且在20:00MLT-24:00MLT存在高发生率,同时依赖于太阳活动,这也验证了前人的相关研究结果.   相似文献   

12.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   

13.
地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲-非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚-澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.  相似文献   

14.
地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲-非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚-澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.  相似文献   

15.
基于IGS电离层TEC格网的扰动特征统计分析   总被引:1,自引:0,他引:1       下载免费PDF全文
电离层总电子含量(TEC)是研究空间天气特性的重要参量,通过分析电离层TEC,可以了解空间环境的变化特征.利用IGS提供的1999—2016年全球电离层TEC格网数据,按照地磁纬度将全球划分为高、中、中低、低磁纬四个区域,计算不同区域的电离层扰动;利用大量统计数据选取电离层扰动事件的判定阈值,分析电离层扰动与太阳活动、时空之间的关系;计算电离层扰动指数与地磁活动之间的相关系数.结果显示:电离层扰动与太阳活动变化具有较强的正相关特性.在太阳活动低年,电离层扰动事件发生的概率约为1.79%,在太阳活动高年发生扰动的概率约为10.18%.在空间分布上,无论是太阳活动高年还是低年,高磁纬地区发生扰动事件的概率均大于其他磁纬出现扰动事件的概率.计算得到的中磁纬和中低磁纬地区电离层扰动指数与全球地磁指数Ap的相关系数分别为0.57和0.56,说明电离层扰动指数与Ap具有较好的相关关系;高磁纬电离层扰动指数与Ap的相关系数为0.44;低磁纬扰动指数与Ap的相关系数为0.39.以上结果表明,不同区域电离层扰动与全球地磁指数Ap的相关性不同,测定区域地磁指数可能会提高与电离层扰动的相关性.   相似文献   

16.
基于NTCM-BC模型的全球卫星导航系统单频电离层延迟修正   总被引:1,自引:0,他引:1  
选择NTCM-BC模型作为单频电离层延迟修正模型,通过非线性最小二乘拟合的方法,利用提前一天预测的电离层图(COPG文件),计算得到NTCM-BC模型修正系数;利用Klobuchar模型和IGS发布的GIM数据对NTCM-BC模型进行比较和分析.对太阳活动高、中、低年实测数据的分析结果表明:全球平均水平上,NTCM-BC模型的电离层延迟修正性能明显优于Klobuchar模型,NTCM-BC模型的TEC平均误差和均方根误差比Klobuchar模型分别下降了41%和30%;模型的TEC计算误差与太阳活动剧烈程度成正相关,即太阳活动高年模型误差较大,太阳活动低年误差相对较低.相较于磁静日,磁扰日期间Klobuchar模型和NCTM模型的误差均有一定程度的增加.此外,模型的电离层修正误差同时存在明显的纬度、季节和地方时差异.   相似文献   

17.
利用海南台站(19.5°N,109.1°E,dip:13.6°N)和磁赤道区的多种地基和天基观测数据,对2011年11月20日观测到的电离层不规则体事件进行了分析.海南台站VHF雷达、电离层闪烁和数字测高仪的综合观测结果表明,当天日落附近发生了强的电离层不规则体事件,主要表现为雷达羽和强闪烁的形态.结合磁赤道区GPS和C/NOFS卫星观测结果进行分析可知,海南台站日落附近出现的雷达羽和强闪烁与南海磁赤道区产生的主等离子体泡存在明显联系.   相似文献   

18.
基于高频多普勒观测,研究中纬地区日间类扩展F现象及其与其他电离层扰动现象的关联.结果表明:日间类扩展F具有出现时间覆盖面广、持续时间长、与其他电离层扰动相互伴随等特征;形态特征表现为回波弥散(与夜间扩展F相似),弥散回波的频移多倾向于正向偏移,有时与行进电离层扰动(TIDs)相互伴随.日间类扩展F现象虽然是偶发事件,且发生率极低,但其出现时间及区域的广泛性充分体现了该现象对空间天气及空间环境的影响具有不可忽视的重要性.   相似文献   

19.
本文分析了满洲里、Freiburg、Billerica三个站的电离层暴负相开始时间与磁暴主相开始时间的相关关系,并且提出了一个电离层暴负相开始时间的计算模式。假定在磁暴主相开始时,在极光椭圆上空出现了含有较多分子的气体。气体被热层风携带,同时向外膨胀。当富含分子的气体到达台站上空时,负相电离层暴就开始了。计算结果与满洲里。Freiburg和Billerica三个站的统计结果相符合。   相似文献   

20.
典型电离层多普勒记录及其讨论   总被引:7,自引:1,他引:7  
由于地面电离层多普勒频率偏移测量具有时间连续、设备相对简便等固有特征,它特别适合于扰监测。本文在整理北京大学电离层高频多普勒台站观测资料的基础上,给出了一些典型电离层多普勒效应观测现象,这些现象反映了多普勒的细致分析对电离层形态学研究有其特殊意义。利用IRI模型,对多普勒频移的太阳耀斑效应及电离层不规则结构对多普勒频移的影响进行了模拟计算,理论结果与观测基本一致,从而大体上解释了这些响应的物理机制。论文最后对观测到的一种特殊的记录类型--S型描迹的具体成因作了详细的分析和讨论,指出在一定条件下,以一定相位速度水平传播的声重波可以产生这类记录,给出了相位速度和振幅等声重波参数与记录描迹形状的关系,这对从多普勒频移记录推演电离层中的波动特征有一定的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号