首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
通过理论分析和实验结果指出了用激波管动压校准装置校准压力传感器时被校传感器安装在激波管侧面进行校准存在的问题 ,给出了如何对侧面安装使用的压力传感器用激波管进行动态特性校准的方法。  相似文献   

2.
激波管是一种关键的压力传感器动态校准装置,但是由于其输出的不稳定性,使得被校准压力传感器的输出数据常常难以直接用于动态建模,且所建模型的准确性也难以表征.提出一种用于激波管校准压力传感器的动态参数估计方法.首先使用基于信息方法处理被校准压力传感器在阶跃激励下的输出数据,得到最优估计值序列、上界序列和下界序列;然后,对所得最优估计值序列、上界序列和下界序列分别进行白化滤波和差分建模,得到最优估计模型、上界模型和下界模型;之后对各个模型进行求解,最优估计模型得出被校准压力传感器的最优特征指标,上界模型和下界模型所得结果构成最优性能指标的估计区间.选用恩德福克200系列压阻传感器进行激波管校准实验,得出时域动态指标的相对误差小于8.17%,频域动态指标相对误差小于9.15%;所有指标均100%位于求得的估计区间内.   相似文献   

3.
压力传感器动态特性参数的不确定度是表征其动态测量性能的重要指标。提出了一种压力传感器动态特性参数的不确定度评定方法。首先,使用激波管动态校准系统产生阶跃压力信号激励压力传感器,得到传感器的输出信号;其次,采用基于经验模态分解(EMD)的传感器输出信号预处理方法,减小动态校准过程中噪声的影响;然后,根据传感器的输入输出信号,采用自适应最小二乘法建立压力传感器的数学模型,进而得到其时频域动态特性参数;最后,针对重复校准实验得到的动态特性参数序列的小样本特点,采用自助法计算参数的扩展不确定度和相对不确定度。采用激波管系统对压力传感器进行多次重复动态校准实验,计算时频域动态特性参数的不确定度,并与现有方法进行对比。实验结果表明:本文方法可以弥补贝塞尔法在处理小样本量数据中的不足,且与蒙特卡罗法的不确定度评定结果相对误差小于10%,说明本文方法可以有效地评定压力传感器动态特性参数的不确定度。分析时频域动态特性参数的相对不确定度得到传感器的工作频带和超调量受噪声的影响较大,为动态校准实验条件的改善提供了重要依据。   相似文献   

4.
动态压力校准技术是确保航天型号压力测试数据准确可靠、量值统一的关键。介绍了动态压力校准的 必要性和特殊性,分别从阶跃压力校准法、周期压力校准法以及脉冲压力校准法三个方面,系统总结了国内外动态 压力校准技术的研究现状,提出目前仍存在的问题并对未来动态压力校准技术的发展提出改进措施。  相似文献   

5.
测量气体的脉冲压力时,广泛地采用了压电式传感器。应用这种传感器的主要困难是:不仅需要单独校准,还需要测量系统的时间特性稳定。为此,一般都采用能获得陡直压力前沿的激波管。但这种方法测量起来很复杂,而且,又有了一个如何确定激波压力增量值的问题,尤其在精确测量时更是如此。要计算激波压力就需要知道初始压力、声  相似文献   

6.
本文针对压力传感器动态校准需求,提出了一种基于虚拟仪器的正弦动态压力校准方法,设计了正弦动态压力校准系统,分别从总体设计方案、硬件配置及软件控制三方面进行介绍,然后对正弦动态压力校准系统进行试验及不确定度评定,结果表明该方法可行有效,可满足航空航天、工业领域中对压力动态测量要求。  相似文献   

7.
本文针对压力传感器动态校准需求,提出了一种基于虚拟仪器的正弦动态压力校准方法,设计了正弦动态压力校准系统,分别从总体设计方案、硬件配置及软件控制三方面进行介绍,然后对正弦动态压力校准系统进行试验及不确定度评定,结果表明该方法可行有效,可满足航空航天、工业领域中对压力动态测量要求。  相似文献   

8.
介绍了最新研制的动态压力传感器频率特性连续校准装置.该装置既可作为正弦压力校准装置使用,也可作为扫频测量装置对压力传感器进行扫频测量,直接获得压力传感器的幅频特性和相频特性曲线,从而达到对动态压力传感器频率特性连续校准的目的.装置单频测量压力幅值比与扫频测量压力幅值比的误差低于±1%,相位误差低于±0.5°.装置的扫频频率范围为(0.1~10 000)Hz,工作压力范围为(0.25~10)MPa.  相似文献   

9.
压力传感器动态校准不确定度评定   总被引:4,自引:1,他引:4  
压力传感器动态校准不确定度是表征其测量精度的重要指标.提出一种用于压力传感器动态校准不确定度评价的灰色方法.首先,使用正弦压力发生器产生标准的正弦压力信号驱动被校传感器,获取传感器特征输出;然后采用灰色关联分析处理传感器特征数据,得到权重数列;之后建立灰色模型并计算出各校准频率点的灰色偏度;最后采用加权最小二乘法去拟合以得到的工作频率范围内所有频率点的不确定数据,建立起被校压力传感器的动态校准不确定度模型.设置了幅值变化及不变两种情况下的实验验证方案,使用本文所提灰方法及黄方法分别对各方案下的数据进行处理;实验结果的对比表明:两种方案下所得动态校准不确定度曲线模型具有一致性;其中幅值变化情况下,两种方法在指定校准频率点所得校准不确定度的相对误差优于6%,在测试频率点相对误差也小于10%;幅值不变情况下,在大部分频率点处所得相对误差普遍小于5%,部分优于0.018%.实验分析证明,所提灰方法能很可靠地评估压力传感器动态校准不确定度.   相似文献   

10.
院标准《正弦压力法压力传感器动态校准》通过审定中国运载火箭技术研究院院标准《正弦压力法压力传感器动态校准》审定会于1995年12月26日在102所召开。中国计量科学研究院等9个单位的16名专家参加了审定。与会专家一致认为:该标准是在多年实践经验的基础...  相似文献   

11.
The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath magnetic pressure and ionospheric thermal pressure; its typical altitudes range from ~300 km near the subsolar point to ~900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.  相似文献   

12.
分别对行星际激波、太阳风动压增大事件和减小事件的地球磁场响应进行了比较. 分析结果表明, 同步轨道磁场对太阳风扰动在向阳面产生较强的正响应, 在背阳面 响应较弱且有时会出现负响应, 地磁指数SYM-H对太阳风扰动的响应为正响应. 同时还得出, 向阳侧同步轨道磁场响应幅度d Bz与地磁指数响应幅度d SYM-H、上下游动压均方差均具有较好的相关性. 地磁指数响应幅度与同步轨道磁场响应幅度相关关系在激波和动压增大事件中具有一致性, 动压减小事件出 现明显差异, 这说明激波和动压增大事件在影响地球磁场方面具有某种共性.   相似文献   

13.
介绍了一种供氧系统高空爆炸减压动态特性的地面模拟实验方法,并将实验结果与在爆炸减压舱的实验结果进行了比较分析.实验结果表明:地面模拟与爆炸减压舱模拟供氧系统动态特性的实验曲线基本吻合,两者的卸压时间存在一个比例关系,从而说明了所提出的地面模拟实验方法的有效性.  相似文献   

14.
电液主动控制挤压油膜阻尼器的理论分析   总被引:4,自引:0,他引:4  
针对旋转机械采用传统的动压轴承构成的挤压油膜阻尼器存在的问题,提出了一种由压电晶体-电液主动控制的动静压混合轴承构成的电液挤压油膜阻尼器(HSFD).对于这种电液挤压油膜阻尼器, 经典的半油膜(π油膜)假设不再成立. 为了求解它的压力分布, 提出了一种适用于含有动静压混合作用时Reynolds方程的求解方法. 在此基础上, 对采用这种电液挤压油膜阻尼器的转子系统进行了理论分析, 从而为实现主动控制奠定了基础.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号