首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Lunar base development missions   总被引:1,自引:0,他引:1  
On 20 July 1969, humankind first set foot on our Moon. Since then we have developed the Space Shuttle, explored most of the planets, cooperated in the development of the International Space Station, and expanded our knowledge of the universe through use of systems such as the Hubble Space Telescope and the Mars Pathfinder. After just five human follow-on missions to our Moon, we have returned robotically only twice to orbit, to map the surface and explore for resources.

The indication of the presence of hydrogen concentration at the poles of our Moon found by Lunar Prospector has added a new perspective for groups studying and implementing future lunar missions. Plans for nearterm missions such as the European Space Agency (ESA) “Euromoon 2000”, the Japanese Lunar A and Selene, and the Mitsubishi ”Earthrise 2001” Project, along with follow-on phases to the Lunar Prospector, are the beginning of humankind's return to the Moon. Organizations such as the International Academy of Astronautics have long championed the “Case for an International Lunar Base,” and a vision of a commercially-based lunar program has been outlined by several groups. A Lunar Economic Development Authority (LEDA) promoted by the United Society in Space was promulgated by the filing of articles of incorporation in the state of Colorado on 4 August 1997. This non-profit corporation has as its goal the orderly development of the Moon, through issuance of bonds to international private citizens and business entities who care to invest in its long-term development.

This paper draws from the works of the aforementioned, and specifically from the International Academy of Astronautics Lunar Base Committee, to structure a series of architectures leading toward eventual international commercial colonization of the lunar surface. While the prospect of fully reusable transportation systems utilizing fully developed lunar resources to perpetuate the permanent lunar infrastructure is enticing, this is a goal. We must utilize our current and near-term capabilities to re-initiate human lunar presence, and then build on emerging technologies to strengthen our capabilities. Humankind's return to the Moon is a part of our destiny. We can return in the near future, and then proceed to a commercial, permanent settlement in the 21st century.  相似文献   


2.
《Acta Astronautica》2001,48(5-12):711-721
Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system.This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point).Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform order-of-magnitude cost estimates of a near-term human lunar mission.  相似文献   

3.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

4.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

5.
《Acta Astronautica》2009,64(11-12):1337-1342
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

6.
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

7.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

8.
月面设施原位建造技术的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
月面设施原位制造技术是未来航天科技发展的热点技术之一。以美、欧为代表的航天强国及组织均开展了月球原位制造技术的研究,研制了原位制造设备,并开展了相应的地面工艺验证工作,积累了有价值的试验数据和技术参数。在充分调研及跟踪国内外月面设施原位建造最新成果的基础上,系统分析国内外月面设施原位建造技术的发展思路,为我国月球基地的建造提供参考,对我国的载人登月、月球基地等月球探测任务的实施具有重要意义。  相似文献   

9.
早期的探月飞行都采用直接由地球飞到月球的地月转移方式,探测器由运载火箭直接发送到地月转移轨道,这样做的好处是飞行时间比较短,只需3至5天的时间。20世纪90年代开始的新一轮探月活动中采用了一种新的飞行方式,探测器飞离地球前,先在绕地球飞行的调相轨道上运行若干圈,这样做的好处有三:一是可以在运载火箭能力不够的情况下,由探测器来补充;二是可以减小转移轨道中途修正的负担;三是可以扩大发射机会窗口。文章以嫦娥一号探测器及美、日的两个月球探测器为例,详细讨论了这种新的飞行方式,同时还对我国后续探月计划的飞行轨道提出了初步建议。  相似文献   

10.
Engel KA 《Acta Astronautica》2005,57(2-8):277-287
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.  相似文献   

11.
Ajey Lele   《Space Policy》2010,26(4):222-228
After a gap of 40 years, the Moon is again the focus of several countries’ space ambitions. Japan, China and India have already launched their first Moon missions and are expected to send humans moonwards within the next 10–15 years. This revival of lunar programmes in the post-cold war era goes beyond symbolism and is also about the race to grab the natural resources of the Moon. Such ambitious missions by these states imply that they intend to change the unipolar world into one with multiple power centres, and would use space technology as one of the components to do so. This paper examines the first phase Moon missions of the Asian states and argues that their overall deep space mission aspirations have strategic ambitions attached.  相似文献   

12.
Since the completion of its original prehistoric migration some 10 000 years ago, humankind has had nowhere else on Earth to go. The Space Age has produced the wherewithal for a new off-Earth human migration to restart, with the Moon as the clear initial destination. As insurance against cataclysmic and human-induced natural disasters, as a means of creating new commercial industrial–financial opportunities at a time of fundamental change in the global economy, and as a way for the USA to regain some international political influence, it should pursue Moon settlement vigorously and soon. However, the developing US space exploration program being designed by NASA for such an undertaking is too narrowly confined to the pursuit of natural-science objectives. There must be fundamental involvement of the private sector and of a much wider range of professionals and federal departments therein.  相似文献   

13.
NASA's plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized weak stability boundary in the Earth–Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.  相似文献   

14.
A recent study made by ESA has reviewed the scientific investigations to be only, or best, performed on the Moon (Return to the Moon, ESA SP-1150, June 1992), and has identified the need for a manned lunar outpost to provide support to field geologists in sampling and in-situ observations of the lunar surface, and to allow the refurbishments of surface stations and rovers. Planning and development for a manned outpost on the Moon requires an in-depth understanding and analysis of the functions this outpost is expected to perform. We therefore analyzed the impact of the proposed scientific investigations on the design of a manned lunar outpost. The specific questions raised in our study were: What are the medical, physiological and psychological risks for a crew to stay and to work on the Moon? What transit and lunar surface infrastructures (habitats and vehicles) are needed to minimize those risks?  相似文献   

15.
月亮女神探月计划及对我国月球与深空探测的思考   总被引:1,自引:1,他引:1  
日本月亮女神月球探测器在顺利完成各项探测任务后,于北京时间2009年6月11日受控落月.该探月计划在一箭三星组网探测月球背面重力场、有效载荷创新设计、科研活动组织、成果产出、公众参与和科普宣传等方面有许多亮点,对我国探月工程有重要参考价值.文章综合回顾、分析和评述了月亮女神探月计划的任务、探测器、轨道与飞控、重要事件等...  相似文献   

16.
The Moon Treaty, adopted by the UN's Outer Space Committee by consensus in 1979, has never been ratified by the major space powers — although it is essentially only an elaboration of the non-controversial Outer-Space Treaty. The author discusses the international political and economic climate of the time to explain the West's apparent withdrawal into self-interest. The controversy over the exploitation of lunar resources is preventing agreement on the other, more important issues covered by the Moon Treaty. The author argues that the successful INMARSAT organization could serve as a model for cooperation in exploiting the Moon's resources. A greater degree of understanding, humility, realism and generosity is needed before the problems can be resolved.  相似文献   

17.
面向载人登月任务需要,针对星历模型下具备自由返回能力的地月转移轨道设计问题进行了研究。在三体模型下对地月三维自由返回轨道进行了求解,得到了地月空间内的自由返回轨道分布情况。在二体模型假设下对近月段的三脉冲变轨进行了求解,给出了变平面机动的计算方法。进一步提出了两轮逐次优化修正策略,分别以高度和再入走廊为主要约束,采用内点法和SQP算法在高精度星历模型下对自由返回轨道初值进行逐次优化修正。之后,采用SQP算法在星历模型下对近月三脉冲变轨进行优化修正,得到了星历模型下的自由返回+近月三脉冲变轨地月转移策略。仿真校验结果表明本文提出的方法能够在给定约束下有效求解星历模型下具备自由返回能力的地月转移轨道,为载人登月任务的转移轨道设计提供参考。  相似文献   

18.
At a time when scientific and commercial interest in the Moon is being reinvigorated it is becoming fashionable for ordinary individuals to ‘buy’ plots on the lunar surface, with the ‘vendors’ arguing that an absence of specific prohibition of individual private activity in space makes such action legal. It is therefore time for the legal community to address this situation by investigating just how legal such activity is—and bringing their findings to the attention of governments. This can be done through an examination of the relationship between national law and international space law, of the provisions of international space law—especially Article 2 of the Outer Space Treaty—and by answering any claims to private ownership of immovable property. Aside from the fact that individuals appear to be being duped, the pursuit of property claims on the Moon could impede future activities aimed at benefiting society.  相似文献   

19.
月球返回再入着陆场不仅影响月-地返回转移和返回再入飞行,同时也影响整个月球飞行任务的规划和设计.文章首先分析了航天器与地-月间的相对位置关系;结合月-地返回转移及返回再入轨道特性,理清了月球、地球着陆场和航天器三者在惯性空间内相对位置的内在约束关系;最后分析并通过仿真研究,明确了制约航天器返回再入着陆场位置选择的限定因...  相似文献   

20.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号