首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary On May 8, 1980, we conducted a 90 minute observation on hard X-ray emission (15-200 keV) from Her X-1, using a large area ( 1500 cm2), low background balloon borne X-ray telescope. The energy resolution of the telescope was 17% FWHM at 60 keV. Her X-1 was at binary phase 0.0725 and 2.7 ± 0.5 days after turn on in the 35 day cycle.Average pulsation light curves were obtained by sorting data into 25 equal bins, according to pulse arrival time, modulo the 1.24 sec pulsation period. The width of the main pulse is energy dependent and in the 45–75 keV region about 30% smaller than in the range from 15 to 30 keV.The data have been analyzed by taking the Her X-1 pulse minus background spectrum, where the pulse count rate is defined in a pulse phase interval around the pulse maximum of the 1.24 sec period. The background spectrum was intermittently obtained by a chopping collimator system.A spectral feature is present in emission at an energy of 49.5 (+ 1.5, -3) keV and a FWHM of 18 (+ 6, -3) keV and in absorption at an energy of 29.5 (+ 1.7, -1.5) keV and a FWHM of 17.0 (+ 2.6, -2.8) keV. The intensity of this line feature in emission is (1.8 ± 0.4) photons/cm sec. The line excess in emission over the continuum (with kT = 6.75 (+ 0.2, -0.4) keV) is 7.  相似文献   

2.
The capabilities of a gas scintillator camera for use in X-ray astronomy are investigated. Detailed experimental results are presented on both the position and energy resolution over the energy range 0.28 to 6 keV. The energy resolution varies from 38% to 9.5% for 0.28 keV C-K and 6 keV X-rays respectively. Position resolutions of 1.8 mm and 3.5 mm for 6 keV and 1.5 keV Al-K X-rays were obtained. Image quality and uniformity over the camera aperture are also discussed, whilst further techniques leading to improvements in position resolution are outlined. Finally applications of these cameras in conjunction with grazing incidence and coded mask X-ray optics are discussed.  相似文献   

3.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

4.
The Low Energy Charged Particle (LECP) instruments on Voyagers 1 (V1) and 2 (V2) measure the differential in energy fluxes and anisotropies of low energy ions30 keV and electrons20 keV differential in energy ion composition200 keV/nuc, and the integral rates of cosmic ray protons>70 MeV (Krimigiset al., 1977). We discuss shock-accelerated ions and latitude-associated differences between V1 and V2 during 1991 to April 1994.  相似文献   

5.
This article presents some of the new and important particle features that have been detected in the energy range 1 keV to 290 keV by the ISEE-1 and -2 spacecraft near the magnetopause, bow shock, and the interplanetary space. Only examples of data from the first few orbits, when the spacecraft were on the front side, are shown.Paper presented at 13th ESLAB Symposium, Innsbruck, Austria (June 5, 1978).  相似文献   

6.
A 13 hr observation of 2S0142+61 on 1984 August 27 by EXOSAT shows the X-ray flux of 2S0142+61 to be modulated with a period of 1456+/-6 s. The 1–10 keV spectrum is two component with a 0.7 keV thermal and 0.0 energy index power law, with 30% of the total luminosity in the thermal component. The spectrum is absorbed by 1 × 1022 H cm-2. Only the hard component is pulsed with a 3 to 10 keV peak to mean amplitude of 35%. Below 2 keV the modulation is less than a few percent. The total 1–10 keV luminosity is 3.5 × 1032 erg s-1 for a distance of 100 pc. Possible optical counterparts are discussed.  相似文献   

7.
Solar gamma rays     
The theory of gamma-ray production in solar flares is treated in detail. Both lines and continuum are produced. The strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24±0.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric 3He abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from 12C and at 6.2 from 16O and 15N. These lines result from both direct excitation and spallation. The widths of individual prompt lines are determined by nuclear kinematics. The width of the 4.43 MeV line is 100 keV and that of the 6.2 MeV feature is 300 keV. Both these lines have been observed from a solar flare. Other potentially observable lines are predicted at 0.845 and 1.24 MeV from 56Fe, at 1.63 MeV principally from 14N and 20Ne, at 1.78 MeV from 28Si, at 5.3 MeV from 15O and 15N, and at 7.12 MeV from 16O. The widths of the iron lines are only a few keV, while those of the other lines are about 100 keV. The only other observed line is at 0.511 MeV from positron annihilation. The width of this line is determined by the temperature, and its temporal variation depends on the density of the ambient medium in the annihilation region. Positrons can also annihilate from the 3 S state of positronium to produce a 3-photon continuum below 0.511 MeV. In addition, the lines of 7Li and 7Be at 0.478 keV and 0.431 keV, which have kinematical widths of 30 keV, blend into a strong feature just below the 0.511 MeV line.From the comparison of the observed and calculated intensities of the line at 4.4 MeV to that of the 2.2 MeV line it is possible to obtain information on the spectrum of accelerated nuclei in flares. Moreover, from the absolute intensities of these lines the total number of accelerated nuclei at the Sun and their heating of the flare region can be estimated. We find that about 1033 protons of energies greater than 30 MeV were produced in the 1972, August 4 flare.The gamma-ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities we find a proton-to-electron ratio of about 10 to 102 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma-ray emission produce a few percent of the heat generated by the electrons which make the hard X-rays above 20 keV.NAS-NRC Resident Research Associate.Research supported by the National Science Foundation under Grant GP 31620.  相似文献   

8.
We review the X- and gamma-ray observations of Cygnus X-1 and their theoretical interpretations, with emphasis on new developments since the mid-1970's. The overall data base at present is most consistent with the inverse Compton model by hot thermal electrons of T e 109 K, for the hard X-ray luminosity (10–200 keV). However, the origin of the soft X-rays ( 10 keV) in high states and gamma rays (> 200 keV) remain unsettled.Operated under DOE Contract W-7405-Eng-48.Partially supported by NASA Grant NGR 05-020-668.NRC/NRL Research Associate.  相似文献   

9.
We present light curves of EX Hydrae in the 1–10 keV range obtained with the medium energy experiment of EXOSAT. The 67-min modulation was observed with a peak-to-peak amplitude of 36 % in the 1–4 keV range and of 24 % in the 4–9 keV range. Newly discovered was a partial X-ray eclipse of 3 min full width which coincides with the optical eclipse and is seen at all energies. The results are interpreted in terms of an intermediate-polar (DQ Her star) model of EX Hydrae.  相似文献   

10.
We present the results of the spectral and timing analysis of an observation of GX9+1/4U1758-205 performed with the Medium Energy Experiment aboard EXOSAT. During our observation the source flux varied irregularly in time scales from minutes to hours. No periodic emission in the period range from 16 msec to 2000 sec was found with an upper limit of around 1% (3 ) for the pulsed fraction. The hardness ratio shows a correlated change with the flux intensity (Sco X-1 behaviour). The spectrum could be fitted by a double component model, a black body component (kT=1.16–1.26 keV) together with a thermal bremsstrahlung law (kT=13–15keV). The black-body temperature-black-body flux relation follows a Stefan Boltzmann law with RBB=15.3 km*D/10 kpc. No iron line was detected. The upper limit for the line equivalent width of a 6.7 keV iron emission line is 40 eV (1). The X-ray spectral behaviour of GX9+1 indicates, that this source belongs to the class of Low-Mass X-ray Binaries (LMXB).  相似文献   

11.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

12.
We report initial measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-1. ULECA is an electrostatic deflection — total energy sensor consisting of a collimator, deflection analyzer and an array of solid state detectors. The position of a given detector, which determines the energy per charge of an incident particle, together with the measured energy determine the particle's charge state. We find that a rich variety of phenomena are operative in the transthermal energy regime (10 keV/Q to 100 keV/Q) covered by ULECA. Specifically, we present observations of locally accelerated protons, alpha particles, and heavier ions in the magnetosheath and upstream of the Earth's bow shock. Preliminary analysis indicates that the behavior of these locally accelerated particles is most similar at the same energy per charge.  相似文献   

13.
EXOSAT observations of the Seyfert galaxy NGC 4151 over the period July 1983 to April 1984 have revealed a decreasing flux in the 2 –10 keV band. In accord with previous measurements a power law spectrum attenuated with a simple column of cold gas does not provide a satisfactory spectral fit below 3 keV, where a lower relative opacity is required. Inclusion of additional low energy data from the EXOSAT telescopes allows the modelling of the absorbing column to be improved and reveals a second, separate, soft X-ray spectral component.  相似文献   

14.
For spectral studies at energies 3keV, higher than those usually neglected by grazing incidence telescopes with high efficiency, freestanding, self-focussing, crystal arrays offer the most practical way to achieve adequate sensitivity through concentration. Such spectrometers can be designed for the entire range of energies that can be diffracted by crystals, 5oo eV to 104 eV, and, for energies below 3keV, can have sensitivities greater than or comparable with that of instruments at the focal plane of a large telescope.  相似文献   

15.
The Medium Energy Instrument on EXOSAT, although conceived as the main instrument for occultations, has been made sufficiently versatile to provide a significant advance over previous large area proportional counters when used for individual source studies of timing and spectra. The energy range is 1.2 to 50 keV, with E/E of 0.2 at 6 keV, sufficient to detect iron lines. The effective area of 1800 cm2 and narrow field of view (3/4° × 3/4°) make it suitable for the detailed study of sources down to the 0.3 mCrab confusion limit. The unique facility provided by EXOSAT, allowing uninterrupted observations of X-ray sources for periods of up to 80 hours, backed up by a high capacity data link and on-board processing, enables timing studies to be performed over the range from milliseconds to days. Sophisticated background discrimination techniques giving a rejection efficiency of99% will control the background count rate to a suitably low value in the environment of the 200,000 km orbit.  相似文献   

16.
Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4 angular coverage and spectral measurements for Z 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to > 11 MeV, and for the elemental species helium through iron from approximately 10 keV nucl-1 to 15 MeV nucl-1. Two bi-directional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The EPD has demonstrated its operational flexibility throughout the long evolution of the Galileo program by readily accommodating a variety of secondary mission objectives occasioned by the changing mission profile, such as the Venus flyby and the Earth 1 and 2 encounters. To date the EPD performance in flight has been nominal. In this paper we describe the instrument and its operation.  相似文献   

17.
A series of observations of the Virgo cluster of galaxies with the Medium Energy experiment on board EXOSAT are presented. These take the form of two orthogonal scans meeting at M87. The observed count rates have been compared with those obtained with the IPC on board the EINSTEIN observatory and are found to be consistent with the the IPC surface brightness distribution. This fact together with spectral data obtained with Exosat indicates that the region around M87 is more or less isothermal (T 2–3 keV) out to > 80 arc min from the centre. Although a slight hardening is seen near the optical centroid of the cluster the results do not support a model which involves a hot ( 8 keV) intra-cluster medium. A mass of 5 × 1013 solar masses is derived for the inner 90 arc minutes of M87.  相似文献   

18.
Three-dimensional distributions for 24.0–44.5 keV protons (ions) are presented from the ISEE-1 medium energy particles instrument during a magnetopause traversal at 01:10 UT on 20 November 1977. Local time of the traversal was 1030. Ion fluxes were observed coming generally from the subsolar region, but over a wide range of latitudes. Enhanced fluxes were observed at the magnetopause crossing with strong components from the subsolar region and from the +Z SE direction. These observations are compared with the simultaneous electric field observations presented by Mozer et al. (1978). Ion streaming in a direction consistent with the Y-component of the drift velocity was observed whereas streaming along the X and Z-components is not seen. Based on energy arguments we conclude that in this case, 24 keV ions are not the major energy carrier of the locally measured · dissipation.  相似文献   

19.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

20.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号