首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   

2.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   

3.
Data have been accumulated from a series of studies in which men have been subjected to weightlessness in orbital space flight for periods of up to 12 weeks. These data are used to predict the long term consequences of weightlessness upon the skeletal system. Space flight induced a loss of calcium which accelerated exponentially from about 50 mg/d at the end of 1 week to approx. 300 mg/d at the end of 12 weeks. The hypercalciuria reached a constant level within 4 weeks while fecal calcium losses continued to increase throughout the period of exposure. This apparent diminution of gastrointestinal absorptive efficiency was accompanied by a slight decline in the plasma level of parathyroid hormone and a slight elevation in the plasma level of calcium and phosphorus. Although losses in mineral from the calcaneus were closely correlated with the calcium imbalance, no changes were detected in the mineral mass of the ulna and radius. From the data presented it is concluded that the process of demineralization observed in space flight is more severe than would be predicted on the basis of observations in immobilized, bed rested, or paralyzed subjects. It is, moreover, suggested that the process may not be totally reversible.  相似文献   

4.
Ten cosmonauts, who performed 30-175-day space flights aboard Salyut-4 and Salyut-6, and over 60 test subjects who were exposed to bed rest of up to 182 days and immersion of up to 56 days, were examined. The renal excretion of potassium and calcium increased, reaching a maximum by the 4-6th weeks in prolonged space flights and simulation studies. During the load tests with potassium and calcium salt, excretion postflight was much higher than preflight. During potassium chloride load tests a positive correlation between the blood content of aldosterone and potassium excretion existed, whereas during calcium lactate load tests an increased calcium excretion was accompanied by a decrease in blood parathyroid hormone concentration. The most probable cause of the negative ion balance in weightlessness is the reduced capacity of tissues to retain electrolytes due to the decreased ion pool capacity. Different exercises have been shown to exert a beneficial effect on electrolyte metabolism.  相似文献   

5.
The purpose of the study was to explore the effects of long-duration space flight on the acquisition of specific visual targets in the horizontal plane. Seven cosmonauts (4 high performance pilots and 3 non-pilots) who had flown between 186–198 days on Mir served as subjects. Baseline testing was performed 4 times prior to launch and 4 times following landing at different intervals totrack recovery. During testing the subjects were required to acquire targets that were randomly presented with both a head and eye movement using a time optimal strategy. Prior to flight two unique head movement strategies, related primarily to piloting experience, were used for target acquisition. Non-pilots employed a Type-I strategy consisting of high velocity head movements with large peak amplitudes, while high performance pilots used primarily low velocity, small amplitude head movements (Type-II) to acquire the targets (p<0.02). For both strategies peak head velocities increased as the angular distance to the target increased (p<0.01) resulting in greater discrimination between strategies for the 60° targets. While preflight eye velocity between strategies did not reach statistical significance, postflight testing revealed a decrease in eye velocity for Type-I compared with their preflight performance (p<0.02) for the 60° targets. Postflight, the Type-I group showed a decrease in head velocity (p<0.20) while the Type-II group compensated by increasing head velocity (p<0.02). Variability for both of the head and eye parameters tended to increase postflight for both types of strategies.  相似文献   

6.
To assess the effects of prolonged space flight on the electrophysiological properties of the heart, vectorcardiograms (VCG) were obtained on the Skylab crews at regular intervals during flight and the pre- and postflight periods. The VCG signals were telemetered from Skylab and analyzed by digital computer. Conventional 12-lead electrocardiograms were derived from the VCG signals by a lead transformation program. Standardized exercise loads were incorporated into the experiment protocol to increase the sensitivity of the VCG for effects of deconditioning and to detect susceptibility for arrhythmias. In Skylab II, 24 preflight, 21 inflight, and 19 postflight experiments were analyzed. Statistically significant inflight changes observed in two or more crew members included: decreased resting heart rate, increased QRS duration, anterior shift QRS vector, increased QRS vector magnitude, anterior shift T vector, and increased T vector magnitude. One astronaut had occasional premature ventricular contractions (PVC) during the pre- and postflight phases. He had a single episode of multiple PVC's during heavy-load exercise testing in flight. A second astronaut had no arrhythmia during pre- or inflight testing. On postflight day 21 he had multiple PVC's and salvos of ectopic ventricular beats. He has had no recurrence of the arrhythmia. With the exception of the cardiac arrhythmias, no deleterious electrophysiological changes were observed during Skylab II.  相似文献   

7.
The present study reports data on respiratory function of lung and chest wall following the 180 days long European - Russian EuroMir '95 space mission. Data reported refer to two subjects studied before the mission, on day 9 and 175 in flight and on days 1, 10, 12, 27 and 120 after return. In-flight vital capacity (VC) and expiratory reserve volume (ERV) were similar to those in supine posture, namely approximately 5% and approximately 30% less than in sitting posture. On day 1 after return, VC was reduced by approximately 30% in both postures. This reflected a decrease in ERV (approximately 0.5 L) and in IC (inspiratory capacity, approximately 1.7 L) that could be attributed to a marked weakening of the respiratory muscles. Regain of normal preflight values barely occurred 120 days after return. Post-flight pressure-volume curves of the lung, chest wall and total respiratory system are equal to preflight ones. The pressure-volume curve of the lung in supine posture is displaced to the right relative to sitting posture and shows a lower compliance. As far as the lung in-flight condition resembles that occurring in supine posture, this implies a lower compliance, a greater amount of blood in the pulmonary microvascular bed, a more homogeneous lung perfusion and therefore a greater microvascular filtration rate towards lung interstitium.  相似文献   

8.
A M Parfitt 《Acta Astronautica》1981,8(9-10):1083-1090
During the manned Skylab flights mineral losses from the calcaneum and changes in external calcium balance were in the ranges found for healthy subjects at bedrest. Calcium balance reached a nadir of -200 mg/day by two months with no change thereafter; the negative balance was due to increased urinary excretion with no change in net absorption. The total calcium loss averaged 18 g in the longest flight of 84 days; the densitiometric data suggested that about two-thirds of this came from trabecular bone and about one-third from cortical bone. These data could represent reversible bone loss due to increased birth rate of normal osteoclasts and osteoblasts and consequent increase in bone turnover and in reversible mineral deficit, or irreversible bone loss due to overactive osteoclasts and/or underactive osteoblasts. If the former explanation is correct, significant bone loss is unlikely whatever the duration of future flights, except in older persons already losing bone; if the latter explanation is correct, space flights longer than six months may lead to a significant increase in fracture risk in later life. Neither terrestrial immobilization nor unwilling animals in orbit are ideal models for the effects of space flight on human bone. To choose between reversible and irreversible mechanisms of bone loss, and to determine the effects of space flight on lifelong fracture risk, future astronauts and cosmonauts must undergo adequate histologic study of bone after in vivo tetracycline labeling.  相似文献   

9.
In manned space flights the renal function and water-salt metabolism undergo substantial changes. With the reserve capabilities of kidneys in mind, their function and regulation of the water-salt balance were investigated in cosmonauts postflight and in Earth-bound simulation experiments with the aid of water loading, hormonal injections (pituitrin, engiotensin, DOCA, ACTH); water- and ion-release were also studied during LBNP and physical exercises. The cosmonauts who performed space flights of 2 to 5 days showed water retention and increased urine excretion of salts during the first postflight days in response to a water load. After the 18-day flight water excretion remained unchanged whereas salt excretion increased. The capacity for osmotic concentration and urine dilution did not alter. The study of the hormonal effect in simulation experiments of different duration demonstrated a normal renal response to the hormonal excretion. After the LBNP tests and physical exercises the water- and salt-excretion declined; a correlation between the level of water- and salt-excretion and the level of these loads was established. The data on the blood- and urine-ionic composition, excretion of nitrogen metabolites, and hormones postflight as well as the results of load and functional tests suggest that changes in the renal function of cosmonauts in weightlessness are associated with regulatory effects on the kidney rather than disturbances in the function of nephron cells.  相似文献   

10.
Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.  相似文献   

11.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   


12.
During the Altair MIR' 93 mission we studied several parameters involved in blood volume regulation. The experiment was done on two cosmonauts before (B-60, B-30), during (D6, D12, D18 for French and D7, D12, D17 for Russian) and after the flight (R+1, R+3 and R+7). Space flight durations were different for two cosmonauts: for the Russian the flight duration was 198 days and for the French 21 days. On board the MIR station only urinary (volume and electrolytes, atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP) and catecholamines) and salivary (cGMP and cortisol) samples were collected, centrifuged and stored in freezer. Lithium was used as a tracer to know exactly the 24 h urine output (CNES urine collection Kit). Before and after flight, blood was drawn with an epicite needle and vacutainer system for hormonal assays (renin, antidiuretic hormone, cGMP, ANP and aldosterone) in two positions: after 30 min rest in upright seated position and after 90 min of supine position. Salivary samples were collected simultaneously. During flight a decrease of diuresis and ANP and an increase of osmolality were found. No modifications of hematocrit, but an increase of salivary cGMP and cortisol were also observed. The decrease of urinary ANP is in favor of hypovolemia as described in previous flights. The postflight examinations revealed changes in fluid-electrolyte metabolism which indicate a hypohydration status and a stimulation of hormonal system responsible for water and electrolyte retention in order to readapt to the normal gravity.  相似文献   

13.
These studies were designed and coordinated to evaluate specific aspects of man's immunologic and hematologic systems which might be altered by or respond to the space flight environment. The biochemical functions investigated included cytogenetic damage to blood cells, immune resistance to disease, regulation of plasma and red cell volumes, metabolic processes of the red blood cell, and physical chemical aspects of red blood cell functions. Only minor changes were observed in the functional capacity of erythrocytes as determined by measuring the concentrations of selected intracellular enzymes and metabolites. Tests of red cell osmotic regulation indicated some elevation in the activity of the metabolic dependent Na-K pump, with no significant alterations in the cellular Na and K concentrations or osmotic fragility. A transient shift in red cell specific-gravity profile was observed on recovery, possibly related to changes in cellular water content. Measurements of hemoconcentration (hematocrit, hemoglobin concentration, red cell count) indicated significant fluctuations postflight, reflecting observed changes in red cell mass and plasma volume. There was no apparent reticulocytosis during the 18 days following the first manned Skylab mission in spite of a significant loss in red cell mass. However, the reticulocyte count and index did increase significantly 5 to 7 days after completion of the second, longer duration, flight. There were no significant changes in either the while blood cell count or differential. However, the capacity of lymphocytes to respond to an in vitro mitogenic challenge was repressed postflight, and appeared to be related to mission duration. The cause of this repression is unknown at this time. Only minor differences were observed in plasma protein patterns. In the second mission there were changes in the proteins involved in the coagulation process which suggested a hypercoagulative condition.  相似文献   

14.
One of the Skylab experiments dealt with motion sickness, comparing susceptibility in the workshop aloft with susceptibility preflight and postflight. Tests were conducted on and after mission-day 8 (MD 8) by which time the astronauts were adapted to working conditions. Stressful accelerations were generated by requiring the astronauts, with eyes covered, to execute standardized head movements (front, back, left, and right) while in a chair that could be rotated at angular velocities up to 30 rpm. The selected endpoint was either 150 discrete head movements or a very mild level of motion sickness. In all rotation experiments aloft, the five astronauts tested (astronaut 1 did not participate) were virtually symptom free, thus demonstrating lower susceptibility aloft than in preflight and postflight tests on the ground when symptoms were always elicited. Inasmuch as the eyes were covered and the canalicular stimuli were the same aloft as on the ground, it would appear that lifting the stimulus to the otolith organs due to gravity was an important factor in reducing susceptibility to motion sickness even though the transient stimuli generated under the test conditions were substantial and abnormal in pattern. Some of the astronauts experienced motion sickness under operational conditions aloft or after splashdown, but attention is centered chiefly on symptoms manifested in zero gravity. None of the Skylab-II crew (astronauts 1 to 3) was motion sick aloft. Astronaut 6 of the Skylab-III crew (astronauts 4 to 6) experienced motion sickness within an hour after transition into orbit; this constitutes the earliest such diagnosis on record under orbital flight conditions. The eliciting stimuli were associated with head and body movements, and astronaut 6 obtained relief by avoiding such movements and by one dose of the drug combination 1-scopolamine 0.35 mg + d-amphetamine 5.0 mg. All three astronauts of Skylab-III experienced motion sickness in the workshop where astronaut 6 was most susceptible and astronaut 4, least susceptible. The higher susceptibility of SL-III crewmen in the workshop, as compared with SL-II crewmen, may be attributable to the fact that they were based in the command module less than one-third as long as SL-II crewmen. The unnatural movements, often resembling acrobatics, permitted in the open spaces of the workshop revealed the great potentialities in weightlessness for generating complex interactions of abnormal or unusual vestibular and visual stimuli. Symptoms were controlled by body restraint and by drugs, but high susceptibility to motion sickness persisted for 3 days and probably much longer; restoration was complete on MD 7. From the foregoing statements it is clear that on and after MD 8 the susceptibility of SL-II and SL-III crewmen to motion sickness under experimental conditions was indistinguishable. The role played by the acquisition of adaptation effects prior to MD 8 is less clear and is a subject to be discussed.  相似文献   

15.
16.
Treatment strategies for Space Motion Sickness (SMS) were compared using the results of postflight oral debriefings. Standardized questionnaires were administered to all crewmembers immediately following Space Shuttle flights by NASA flight surgeons. Cases of SMS were graded as mild, moderate, or severe based on published criteria, and medication effectiveness was judged based on subjective reports of symptom relief. Since October 1989, medication effectiveness is reported inflight through Private Medical Conferences with the crew. A symptom matrix was analyzed for 19 crewmembers treated with oral combination of scopolamine and dextroamphetamine (scopdex) and 15 crewmembers treated with promethazine delivered by intramuscular i.m. or suppository routes. Scopdex has been given preflight as prophylaxis for SMS, but analysis showed delayed symptom presentation in 9 crewmembers or failed to prevent symptoms in 7. Only 3 crewmembers who took scopdex had no symptoms inflight. Fourteen out of 15 crewmembers treated with i.m. promethazine and 6 of 8 treated with promethazine suppositories after symptom development had immediate (within 1-2 h) symptom relief and required no additional medication. There were no cases of delayed symptom presentation in the crewmembers treated with promethazine. This response is in contrast to untreated crewmembers who typically have slow symptom resolution over 72-96 h. We conclude that promethazine is an effective treatment of SMS symptoms inflight. NASA policy currently recommends treating crewmembers with SMS after symptom development, and no longer recommends prophylaxis with scopdex due to delayed symptom development and apparent variable absorption of oral medications during early flight days.  相似文献   

17.
The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to he compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.  相似文献   

18.
In long term space flight, the mechanical forces applied to the skeleton are substantially reduced and are altered in character. This reduced skeletal loading results in a reduction in bone mass. Exercise techniques currently used in space can maintain muscle mass but the mechanical stimulus provided by this exercise does not prevent bone loss. By applying an external impulsive load for a short period each day, which is intended to mimic the heel strike transient, to the lower limb of an astronaut during a long term space flight (5 months), this study tests the hypothesis that the bone cells can be activated by an appropriate external mechanical stimulus to maintain bone mass throughout prolonged periods of weightlessness. A mechanical loading device was developed to produce a loading of the os-calcis similar to that observed during the heel strike transient. The device is activated by the astronaut to provide a transient load to the heel of one leg whilst providing an equivalent exercising load to the other leg. During the EUROMIR95 mission on the MIR space station, an astronaut used this device for a short period daily throughout the duration of the mission. Pre- and post-flight measurements of bone mineral density (BMD) of the os-calcis and femoral neck of the astronaut were made to determine the efficacy of the device in preventing loss of bone mineral during the mission. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical stimulation does not produce a positive effect.  相似文献   

19.
Cognitive performance aboard the life and microgravity spacelab   总被引:2,自引:0,他引:2  
The impact of microgravity and other stressors on cognitive performance need to be quantified before long duration space flights are planned or attempted since countermeasures may be required. Four astronauts completed 38 sessions of a 20-minute battery of six cognitive performance tests on a laptop computer. Twenty-four sessions were preflight, 9 sessions were in-orbit, and 5 sessions were postflight. Mathematical models of learning were fit to each subject's preflight data for each of 14 dependent variables. Assuming continued improvement, expected values were generated from the models for in-orbit comparison. Using single subject designs, two subjects showed statistically significant in-orbit effects. One subject was degraded in two tests, the other was degraded in one test and exceeded performance expectations in another. Other subjects showed no statistically significant effects on the tests. The factors causing the deterioration in the two subjects can not be determined without appropriate ground-based control groups.  相似文献   

20.
The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day, prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could not be reversed by PE or rehydration in individuals subjected to prolonged restriction of motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号