首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

2.
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hαα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hαα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195  Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux.  相似文献   

3.
Recent progress in the diagnosis of flare fast particles is critically discussed with the main emphasis on high resolution hard X-ray (HXR) data from RHESSI and coordinated data from other instruments. Spectacular new photon data findings are highlighted as are advances in theoretical aspects of their use as fast particle diagnostics, and some important comparisons made with interplanetary particle data. More specifically the following topics are addressed:
  • (a)RHESSI data on HXR (electron) versus gamma-ray line (ion) source locations.
  • (b)RHESSI hard X-ray source spatial structure in relation to theoretical models and loop density structure.
  • (c)Energy budget of flare electrons and the Neupert effect.
  • (d)Spectral deconvolution methods including blind target testing and results for RHESSI HXR spectra, including the reality and implications of dips inferred in electron spectra.
  • (e)The relation between flare in situ and interplanetary particle data.
  相似文献   

4.
We discuss some recent observations of red dwarf flare stars. When observed over periods of about 8 hours, each of 4 flare star systems displayed at least one major flare at 20 cm. Quiescent emission at 6 cm was seen from UV Ceti and EQ Peg A, but flares were much less frequent at 6 cm than at 20 cm. We also summarize earlier observations of quiescent emission from UV Ceti. Observations of highly polarized flares with brightness temperatures in excess of 1010 K appear to be common on red dwarf stars. We have also found narrowband flares which strengthen the argument that a coheren emission mechanism is involved in these flares. One of those narrowband flares allows us to place severe constraints on conditions in the flare source, and if the flare is cyclotron maser emission it seems unlikely that magnetic reconnection is involved in the flare.  相似文献   

5.
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models.  相似文献   

6.
The evolution of a site where homologous flares occured on June 8, 1980 is analysed by using observations both in the photosphere and in the chromosphere. The homology is discussed through space, energy and dynamical aspects. The criteria are used in order to propose the definition of a coefficient of homology.  相似文献   

7.
Some specific features of the large-scale magnetic reconnection in large solar flares are briefly reviewed. In particular, the large-scale structure and dynamics of the 3B/X5.7 flare on 14 July 2000 are interpreted in terms of the topological model. The role of the betatron effect in collapsing magnetic traps, that are created by reconnection in the solar corona, is considered. We discuss some possibilities to observe the collapsing trap acceleration in solar flares.  相似文献   

8.
This paper studies the efficiency of geomagnetic solar flare effects (gsfe) in X solar flare detection; so during the period 1999–2007 a comparison between solar flare (sf) observed by satellites of the Geostationary Operational Environmental Satellite (GOES) programme and gsfe published by the Service International des Indices Geomagnetiques (SIIG) is made.  相似文献   

9.
A popular scenario for electron acceleration in solar flares is transit-time damping of low-frequency MHD waves excited by reconnection and its outflows. The scenario requires several processes in sequence to yield energetic electrons of the observed large number. Until now there was very little evidence for this scenario, as it is even not clear where the flare energy is released. RHESSI measurements of bremsstrahlung by non-thermal flare electrons yield energy estimates as well as the position where the energy is deposited. Thus quantitative measurements can be put into the frame of the global magnetic field configuration as seen in coronal EUV line observations. We present RHESSI observations combined with TRACE data that suggest primary energy inputs mostly into electron acceleration and to a minor fraction into coronal heating and primary motion. The more sensitive and lower energy X-ray observations by RHESSI have found also small events (C class) at the time of the acceleration of electron beams exciting meter wave Type III bursts. However, not all RHESSI flares involve Type III radio emissions. The association of other decimeter radio emissions, such as narrowband spikes and pulsations, with X-rays is summarized in view of electron acceleration.  相似文献   

10.
The homologous flares observed in the same region of a spotgroup testify the existence and the duration of a permanent instability. However, they also attest that the general magnetic configuration is not destroyed by these flares and that it changes slowly up to the death of the site.The study of every flaring sites where more than ten flares occur has been performed in Meudon for the 1974–1980 period.One hundred and sixty-six sites have been analysed from the rotation where the A.R. is observed up to five rotations ahead. The basis of the study are the “Synoptic Maps”. A relation is found between the presence of crossing of “filament-phantom” corridors and the location of the homologous flare sites.1  相似文献   

11.
In recent times, X-ray flares have been observed in several flare stars and RS CVn binaries. From an analysis of the X-ray flare observations we find a correlation between the average energy emitted in the X-ray band in flares and the bolometric luminosity of the stars. This relation is similar to the relation obtained in the optical band specifically for the flare stars and hence we suggest a similarity in the flaring nature of the flare stars and the RS CVn binaries. Further, a correlation is also found between the X-ray flare decay time and the peak X-ray luminosity for the flare stars and the RS CVn binaries. We show that this relation can be explained by the solar flare loop models.  相似文献   

12.
An X-ray flare was observed from Algol using the low and medium energy detectors on the European Space Agency's EXOSAT observatory. Spectra obtained during the flare are well fitted by thermal continua while an Fe XXV emission feature was also detected. The strength of this feature indicates a cosmic abundance for iron. The data indicate that the flare occurred in a loop of height approximately 0.25 of the K star radius & with a magnetic field >300 Gauss.  相似文献   

13.
On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the Suprathermal electron model (SEM) was proposed. This model suggests the existance of the multitemperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies E ? 10 keV and small densities ~ 1–5% relative to the thermal component.  相似文献   

14.
Studying the statistical correlation between the solar flare productivity and photospheric magnetic fields is very important and necessary. It is helpful to set up a practical flare forecast model based on magnetic properties and improve the physical understanding of solar flare eruptions. In the previous study ([Cui, Y.M., Li, R., Zhang, L.Y., He, Y.L., Wang, H.N. Correlation between solar flare productivity and photospheric magnetic field properties 1. Maximum horizontal gradient, length of neutral line, number of singular points. Sol. Phys. 237, 45–59, 2006]; from now on we refer to this paper as ‘Paper I’), three measures of the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed from 23990 SOHO/MDI longitudinal magnetograms. The statistical relationship between the solar flare productivity and these three measures is well fitted with sigmoid functions. In the current work, the three measures of the length of strong-shear neutral line, total unsigned current, and total unsigned current helicity are computed from 1353 vector magnetograms observed at Huairou Solar Observing Station. The relationship between the solar flare productivity and the current three measures can also be well fitted with sigmoid functions. These results are expected to be beneficial to future operational flare forecasting models.  相似文献   

15.
A dynamical model of magnetic reconnection in solar two-ribbon flares is applied to EXOSAT observations of a long-decay flare from the star EQ Peg. We show that the model is able of reproducing correctly the energy release rate and temporal evolution of the decay phase of the observed flare. We conclude that the flare was the stellar counterpart of solar two-ribbon flares and we derive the physical parameters of the emitting region.  相似文献   

16.
We briefly review the status of our physical understanding of energy buildup and release in transient active phenomena on the Sun. Such understanding is necessary in order to improve our capabilities to predict such events and their effects in interplanetary space and near-Earth environment. We then discuss the research that we consider is needed for such improvement.  相似文献   

17.
In this paper we establish a similarity in the various phenomena seen in outer atmosphere of Sun and stars. We show that the chromospheric networks, coronal loops and flares can be looked upon as manifestations of the same physical process varying only in their energy content. We then discuss the betratron mechanism as a possible source of this activity.  相似文献   

18.
Intermittence of the short-term periodicities (25–35 days) of the flare index are investigated using the wavelet transform method for the full-disc and for the northern and the southern hemispheres of the Sun separately over the epoch since 1966 until 2002. The wavelet transform results show that occurence of periodicities of flare index power is highly intermittent in time. The period-averaged wavelet power of the flare index presents this fact very clearly displaying independence of flaring activity on the solar hemispheres in several time intervals over almost four solar cycles under study. Moreover correlations of the period-averaged wavelet power of the flare index for the separate hemispheres and for the full-disc reveal significantly stronger relation between the full-disc and the northern hemisphere than between the full-disc and the southern hemisphere while no significant correlations was found between the hemispheres one another.  相似文献   

19.
New flux emerging from below the photosphere is believed to give rise to small flares and also to be capable of triggering large events when extra energy is stored in the overlying field. A summary is given of the observations of emerging flux, together with the current theoretical ideas on its behaviour.  相似文献   

20.
We have examined the conditions for the establishment of charge equilibrium of solar particles during their acceleration. We derive criteria for charge interchange with the atomic and ionized hydrogen at the particles'sources, for two different acceleration mechanisms. It is found that charge interchange is established whenever a particle event is produced. The implications related to mass and charge spectra of particles are discussed. The measured charge state of solar particles cannot in general be directly used for diagnosis of the source temperature, so we suggest another alternative based on the emitted radiation from electron capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号