首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system design and operational results of a 30/20 GHz band small Earth station for integrated services satellite digital network (ISSDN) experiments are presented. The Earth station has a high efficiency offset Cassegrain antenna with elliptical beam, a high power klystron amplifier with 1 kW output power and an uncooled parametric low noise amplifier with 200 K noise temperature. Experiments were performed using the medium capacity communications satellite for experimental purposes (CS). Performance on the Earth station was high. Effective radiation power (ERP) was greater than 88.1 dBW, and the receiving figure of merit (G/T) was larger than 30.6 dB/K. Good transmission characteristics were obtained through the satellite link for demand assigned time-division multiple access (DA-TDMA) with 20 Mbit/s bit rate.  相似文献   

2.
In order to cope with K-band link loss variations and also to improve link reliability, a new closed-loop satellite access power control system is proposed. This system controls Earth station transmitting power so that the overall satellite link quality, such as S/N or error rate, converges to the stipulated value. Satellite transmitting power is also optimized by this control, enabling a considerable increase in transmission capacity and improvement in link reliability.  相似文献   

3.
The Lunar Reconnaissance Orbiter Laser Ranging Investigation   总被引:1,自引:0,他引:1  
The objective of the Lunar Reconnaissance Orbiter (LRO) Laser Ranging (LR) system is to collect precise measurements of range that allow the spacecraft to achieve its requirement for precision orbit determination. The LR will make one-way range measurements via laser pulse time-of-flight from Earth to LRO, and will determine the position of the spacecraft at a sub-meter level with respect to ground stations on Earth and the center of mass of the Moon. Ranging will occur whenever LRO is visible in the line of sight from participating Earth ground tracking stations. The LR consists of two primary components, a flight system and ground system. The flight system consists of a small receiver telescope mounted on the LRO high-gain antenna that captures the uplinked laser signal, and a fiber optic cable that routes the signal to the Lunar Orbiter Laser Altimeter (LOLA) instrument on LRO. The LOLA instrument receiver records the time of the laser signal based on an ultrastable crystal oscillator, and provides the information to the onboard LRO data system for storage and/or transmittal to the ground through the spacecraft radio frequency link. The LR ground system consists of a network of satellite laser ranging stations, a data reception and distribution facility, and the LOLA Science Operations Center. LR measurements will enable the determination of a three-dimensional geodetic grid for the Moon based on the precise seleno-location of ground spots from LOLA.  相似文献   

4.
Two spread-spectrum multiple access systems which usewideband M-ary frequency shift keying (FSK) (MFSK) as theprimary modulation are presented. A bit error rate performanceanalysis is presented and system throughput is calculated for sample C band and Ku band satellite systems. Sample link analyses areincluded to illustrate power and adjacent satellite interferenceconsiderations in practical multiple access systems.  相似文献   

5.
6.
Being both wireless and mobile, low Earth orbiting (LEO) satellite access networks have a unique set of link errors including bit corruption, handoff, and limited connectivity. Unfortunately, most transport protocols are only designed to handle congestion-related errors common in wired networks. This inability to handle multiple kinds of errors results in severe degradation in effective throughput and energy saving, which are relevant metrics for a wireless and mobile environment. A recent study proposed a new transport protocol for satellites called STP that addresses many of the unique problems of satellite networks. There was, however, no explicit attempt to implement a differentiating error control strategy in that protocol. This paper proposes grafting a new probing mechanism in STP to make it more responsive to the prevailing error conditions in the network. The mechanism works by investing some time and transmission effort to determine the cause of error. This overhead is, however, recouped by handsome gains in both the connection's effective throughput and its energy efficiency.  相似文献   

7.
8.
Optimization of available satellite power and transponder bandwidth is utilized to minimize the Earth station G/T in satellite channel per carrier (SCPC) systems. The corresponding optimum transponder output backoff is obtained. Applications in system design are given. In a previous paper [1] the channel capacity of a satellite transponder handling single channel per carrier (SCPC) transmission was derived. The link carrier-to-noise (C/N) ratio was maximized over the output backoff and the maximum bandwidth available was determined. Given the bandwidth per channel for each carrier, the channel capacity was obtained. The objective of the present investigation is to derive the minimum G/T of the Earth station in SCPC systems by optimum utilization of available satellite power and transponder bandwidth. Applications in system design are discussed.  相似文献   

9.
The increasing need for a continuous communications link with U.S. Department of Defense (DoD) spacecraft during test missions in low Earth orbit (LEG) has resulted in greater interest in geosynchronous data relay services. This may be a more economical alternative to building additional remote tracking stations for the Air Force Satellite Control Network (AFSCN), and avoids tying up operational assets for a test mission. A low-cost near-term approach for such a space-based data relay system would utilize two existing Defense Satellite Communication System III spacecraft, two existing ground terminals, and a small, standardized terminal using autonomous antenna pointing for the space vehicle under test. Such a system design is presented  相似文献   

10.
Two hybrid schemes of time-frequency resource sharing to increase the rain margin of Ku-and Ka-band satellite systems are proposed. Scheme 1 requires sharing a small pool of bandwidth for adaptive forward error control coding, sharing a small pool of time frame for rate reduction, and sharing a portion of low frequency time-division multiple access (TDMA) back-up frame for downlink transmission to the rain affected stations. Scheme 2 utilizes variable rate modulation and forward error correction, shares a small pool of time frame for rate reduction, and shares a portion of low frequency TDMA back-up frame. Effective usable capacities of the system using these schemes are calculated. Distribution of resources in order to maximize the effective usable capacity is also analyzed. The results obtained are compared with other adaptive schemes. Preliminary analysis shows that the utilized capacity of scheme 1 exceeds 99 percent of the effective usable capacity possible if it never rains for an outage of 0.05 percent and fade margin of 2.5 dB. For scheme 2 similar performance is achievable at a fade margin of 1.5 dB. For higher outage objectives the loss of effective utilized capacity is higher for scheme 2.  相似文献   

11.
Project Trinidad     
The first intercontinental satellite communication link, which involved the NASA Echo I balloon, a transmitting station on the Island of Trinidad, and a receiving station at Floyd, NY, is discussed. Rome Air Development Center (RADC) experimental stations were set up using a great deal of ingenuity and makeshift equipment and on a very small budget. Much of the equipment was salvaged from unrelated systems, while some was hand-built for this project. The implementation of the system, the testing of the system using moon bounce, the first orbital launch of the Echo I balloon, and the early difficulties encountered in the project are reviewed  相似文献   

12.
The problems of satellite charges with reduced G/T stations for different pre-assigned and demand-assigned modes of operation are considered. A mixed pre-assigned demand-assigned operation is assumed as a model, in which large standard stations use the demand-assigned system for their overflow traffic. Determination of the optimum percentage of overflow for each link and of the global satellite revenue and occupancy, in terms of a general traffic matrix, is carried out and then used in the specific case of the Atlantic satellites to establish demand-assignment and pre-assignment charges as a function of G/T, based on a cost per unit bandwidth criterion. The effects of various demand-assignment systems on the economic balance is also considered.  相似文献   

13.
System aspects of mobile communication and position determination by satellite are described. Topics of discussion are the choice of frequency, type of modulation/multiple access and system design, and considering the effects of active and passive intermodulation and multipath interference. Communication performance and position determination analyses are conducted with respect to small-scale domestic mobile communication systems, where the satellite mobile transponder constitutes only a fraction of the otherwise fixed services C-band or Ku-band payload, and where the orbit position of the spare satellite(s) is dictated by considerations other than purely radio positioning. The system tradeoffs and arguments presented lead to a particular modulation/multiple access system, which provides high channel capacity, good ranging accuracy, and high resistance to multipath fading  相似文献   

14.
卫星导航系统(GNSS)地面站天线对卫星进行上行注入时,信号到达卫星时较弱,容易受到干扰,故地面站注入天线需同时具备平时多目标注入和干扰时单目标功率增强的能力。利用卫星导航系统中地面站之间能够实现精密时间同步的特点,提出了一种基于分布式卫星导航地面站抛物面天线的空间功率合成方法,使用相位预补偿实现分布式天线阵到达目标卫星信号的相位粗同步;分析了相位误差、辐射功率误差对空间功率合成效率的影响,得到了阵元初始相位标定精度与相对定位精度的约束关系;并对合成信号的抗干扰能力和信号质量进行了研究。理论和仿真结果表明,当相位精度因子小于0.2时,4个等辐射功率天线在10°仰角以上波束扫描范围内的功率合成效率均在75%以上,且可以通过控制初始相位标定精度与相对定位精度实现更高的合成效率;而在合成效率要求75%以上时,天线辐射功率误差对合成效率的影响基本可以忽略。采用分布式波束扫描天线能够对地面站上行注入进行功率增强,可实现注入波束和功率的灵活配置,有效解决制约机动式和小型化地面站功率提升的瓶颈问题。  相似文献   

15.
针对全球卫星导航系统(GNSS)精密单点定位(PPP)收敛时间过长的问题,提出了利用低轨卫星(LEO)几何结构变化快的优势,增强GNSS非差非组合PPP(UPPP)的收敛性能。选取中低纬度地区28个能接收GPS、GALILEO和BDS3信号的测站观测数据,比较了极轨和混合LEO星座的增强效果。结果表明:混合LEO星座增强GPS、GALILEO和BDS组合系统时,各测站收敛时间减少60%~80%,70%的测站收敛速度优于极轨星座。当混合LEO星座增强单BDS时,CL和GCL组合系统的收敛时间相当,ENU方向定位误差变化基本一致。收敛时间从10~20 min下降至3 min以内,原因是混合LEO增强BDS定位时,大大改善了卫星的空间结构。  相似文献   

16.
Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the Earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standard link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated  相似文献   

17.
下一代数据中继卫星系统发展思考   总被引:1,自引:0,他引:1  
通过系统阐述中继卫星系统的发展过程,给出了主要国家和组织的中继卫星系统技术体制和现状.再结合卫星、载人航天器和深空探索的未来发展趋势,分析了下一代中继卫星系统的发展需求.在此基础上,从体系结构、卫星平台、链路调制体制、网络协议等方面,探讨并给出了下一代中继卫星系统的发展趋势和技术途径.为满足未来近地、深空航天任务,以及临近、低空快速移动用户的不同要求,节约系统成本,下一代中继卫星系统将向专业化和与其他系统融合的方向发展:星间链路将增加激光链路,数据速率可达到10 Gbit/s以上;多址业务成为主用,同时支持用户数能力将极大提高;对于链路调制体制,在采用CR(Cognitive Radio,认知无线电)和SDR(Software Defined Radio,软件定义无线电)技术的基础上,可实现实时自适应调整和根据需求加载配置;数据传输将采用网络化方式,天地间构成一体化DTN(Delay Tolerant Network,容延迟网络).  相似文献   

18.
Space and Earth observation programs demand stringent guarantees ensuring smooth and reliable operations of space vehicles and satellites. Due to unforeseen circumstances and naturally occurring faults, it is desired that a fault-diagnosis system be capable of detecting, isolating, identifying, or classifying faults in the system. Unfortunately, none of the existing fault-diagnosis methodologies alone can meet all the requirements of an ideal fault- diagnosis system due to the variety of fault types, their severity, and handling mechanisms. However, it is possible to overcome these shortcomings through the integration of different existing fault-diagnosis methodologies. In this paper, a novel learning-based, diagnostic-tree approach is proposed which complements and strengthens existing efficient fault detection mechanisms with an additional ability to classify different types of faults to effectively determine potential fault causes in a subsystem of a satellite. This extra capability serves as a semiautomatic diagnostic decision support aid to expert human operators at ground stations and enables them to determine fault causes and to take quick and efficient recovery/reconfiguration actions. The developed diagnosis/analysis procedure exploits a qualitative technique denoted as diagnostic tree (DX-tree) analysis as a diagnostic tool for fault cause analysis in the attitude control subsystem (ACS) of a satellite. DX-trees constructed by our proposed machine-learning-based automatic tree synthesis algorithm are demonstrated to be able to determine both known and unforeseen combinations of events leading to different fault scenarios generated through synthetic attitude control subsystem data of a satellite. Though the immediate application of our proposed approach would be at ground stations, the proposed technique has potential for being integrated with causal model-based diagnosis and recovery techniques for future autonomous space vehicle missions.  相似文献   

19.
This paper analyzes the performance of a number of modulation and speech processing techniques that have been considered for single voice channel per carrier transmissions via satellite. This transmission mode is applicable to demand assignment systems, which make possible the most efficient loading of the satellite transponder in applications where the traffic at individual Earth terminals is not sufficient to justify a substantial number of dedicated channels. The analysis basically determines the operating point for the satellite transponder which minimizes the required Earth terminal G/T. The fraction of the total link noise allocated to uplink noise is treated as a parameter, so that the cost of improving G/T may be traded against the cost of providing increased Earth terminal transmitter power. Both analog and digital modulation techniques are considered, together with various practical combinations of syllabic companding, voice-actuated carriers, and error-correcting codes. The results are presented in general analytic form, applicable to any modulation technique for which carrier-to-noise density ratio, channel width, and guardband width may be specified. Curves showing required G/T as a function of the total number of voice channels per transponder are also presented for the above-mentioned signal processing techniques, assuming "CCIR/CITT type" speech quality and transponder EIRP and bandwidth typical of current domestic satellite configurations.  相似文献   

20.
干涉测量宽带相关处理算法与验证   总被引:1,自引:0,他引:1  
阐述了一种用于航天器精确角位置测量的干涉测量宽带相关信号处理算法,通过仿真验证了算法的有效性,并搭建卫星干涉测量实验系统,采集某地球同步卫星信号进行宽带相关信号处理,获得清晰干涉条纹,准确估计出反映测站与卫星位置关系的时延观测量。结果表明宽带相关信号处理的估计时延与卫星信号链路标定时延、测距时延组成系统时延闭合回路,初步验证了干涉测量实验系统的有效性,为后续飞行任务中航天器高精度干涉测量积累了技术和经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号