共查询到20条相似文献,搜索用时 15 毫秒
1.
J. L. Burch R. Goldstein T. E. Cravens W. C. Gibson R. N. Lundin C. J. Pollock J. D. Winningham D. T. Young 《Space Science Reviews》2007,128(1-4):697-712
The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma
analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge
range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve
a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector
containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will
be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet
67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition. 相似文献
2.
近年来空间碎片数量急剧增加,已经对空间飞行器造成了严重的威胁。为此提出在碎片密集区域轨道(700km~1000km高度)的碎片处理方案,即利用微小卫星在电子回旋共振(ECR)离子微推进连续切向力作用下,不断进行轨道提升并进行碎片收集。基于此,进一步对电推进系统方案进行优化设计计算,在设计寿命1年的条件下,以推进系统质量最低作为优化目标,以加速电压和工质流量为变量,对电推进系统方案进行优化。最终得到的优化结果为工质流量0.25sccm (0.0244mg/s)、加速电压2488V时,推进系统总体最优,总质量7.288kg,推力器比冲2216s,推力535μN。 相似文献
3.
Carlson C.W. McFadden J.P. Turin P. Curtis D.W. Magoncelli A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives. 相似文献
4.
J. B. Blake P. A. Carranza S. G. Claudepierre J. H. Clemmons W. R. Crain Jr. Y. Dotan J. F. Fennell F. H. Fuentes R. M. Galvan J. S. George M. G. Henderson M. Lalic A. Y. Lin M. D. Looper D. J. Mabry J. E. Mazur B. McCarthy C. Q. Nguyen T. P. O’Brien M. A. Perez M. T. Redding J. L. Roeder D. J. Salvaggio G. A. Sorensen H. E. Spence S. Yi M. P. Zakrzewski 《Space Science Reviews》2013,179(1-4):383-421
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented. 相似文献
5.
D. T. Young J. L. Burch R. G. Gomez A. De Los Santos G. P. Miller P. Wilson N. Paschalidis S. A. Fuselier K. Pickens E. Hertzberg C. J. Pollock J. Scherrer P. B. Wood E. T. Donald D. Aaron J. Furman D. George R. S. Gurnee R. S. Hourani A. Jacques T. Johnson T. Orr K. S. Pan S. Persyn S. Pope J. Roberts M. R. Stokes K. J. Trattner J. M. Webster 《Space Science Reviews》2016,199(1-4):407-470
6.
R. C. Wiens D. S. Burnett C. M. Hohenberg A. Meshik V. Heber A. Grimberg R. Wieler D. B. Reisenfeld 《Space Science Reviews》2007,130(1-4):161-171
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition,
particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the
solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal
hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing
due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives
will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different
solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind
and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation
between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere
and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed
system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which
in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped
in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being
measured. 相似文献
7.
Burnett D.S. Barraclough B.L. Bennett R. Neugebauer M. Oldham L.P. Sasaki C.N. Sevilla D. Smith N. Stansbery E. Sweetnam D. Wiens R.C. 《Space Science Reviews》2003,105(3-4):509-534
The Genesis Discovery mission will return samples of solar matter for analysis of isotopic and elemental compositions in terrestrial
laboratories. This is accomplished by exposing ultra-pure materials to the solar wind at the L1 Lagrangian point and returning
the materials to Earth. Solar wind collection will continue until April 2004 with Earth return in Sept. 2004. The general
science objectives of Genesis are to (1) to obtain solar isotopic abundances to the level of precision required for the interpretation
of planetary science data, (2) to significantly improve knowledge of solar elemental abundances, (3) to measure the composition
of the different solar wind regimes, and (4) to provide a reservoir of solar matter to serve the needs of planetary science
in the 21st century. The Genesis flight system is a sun-pointed spinner, consisting of a spacecraft deck and a sample return
capsule (SRC). The SRC houses a canister which contains the collector materials. The lid of the SRC and a cover to the canister
were opened to begin solar wind collection on November 30, 2001. To obtain samples of O and N ions of higher fluence relative
to background levels in the target materials, an electrostatic mirror (‘concentrator’) is used which focuses the incoming
ions over a diameter of about 20 cm onto a 6 cm diameter set of target materials. Solar wind electron and ion monitors (electrostatic
analyzers) determine the solar wind regime present at the spacecraft and control the deployment of separate arrays of collector
materials to provide the independent regime samples.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
8.
9.
为满足小型航天器的微推进需求,开展了微推力电子回旋共振(ECR)离子推力器的计算研究。实现该推力器的关键是ECR等离子体源合理的磁场和电场分布数值计算,从而使电子在穿过ECR谐振区时能够获得最大能量。为此以双环形永磁材料结构作为磁路,分别以直线形、环形和盘形微波耦合天线产生微波电磁场,同时改变等离子体源特征长度,利用有限元软件计算并分析ECR等离子体源内磁场和微波电场的分布规律以及电子在ECR区的获能规律。结果以微波输入功率5W、频率4.2GHz为例,发现环形耦合天线与较短等离子体源特征长度的结构组合可使电子在ECR区的获能指标达到最大且分布最佳。 相似文献
10.
Paul R. Mahaffy Mehdi Benna Todd King Daniel N. Harpold Robert Arvey Michael Barciniak Mirl Bendt Daniel Carrigan Therese Errigo Vincent Holmes Christopher S. Johnson James Kellogg Patrick Kimvilakani Matthew Lefavor Jerome Hengemihle Ferzan Jaeger Eric Lyness John Maurer Anthony Melak Felix Noreiga Marvin Noriega Kiran Patel Benito Prats Eric Raaen Florence Tan Edwin Weidner Cynthia Gundersen Steven Battel Bruce P. Block Ken Arnett Ryan Miller Curt Cooper Charles Edmonson J. Thomas Nolan 《Space Science Reviews》2015,196(1-4):49-77
11.
T. E. Moore C. R. Chappell M. O. Chandler S. A. Fields C. J. Pollock D. L. Reasoner D. T. Young J. L. Burch N. Eaker J. H. Waite Jr. D. J. McComas J. E. Nordholdt M. F. Thomsen J. J. Berthelier R. Robson 《Space Science Reviews》1995,71(1-4):409-458
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased. 相似文献
12.
H. Nilsson R. Lundin K. Lundin S. Barabash H. Borg O. Norberg A. Fedorov J.-A Sauvaud H. Koskinen E. Kallio P. Riihelä J. L. Burch 《Space Science Reviews》2007,128(1-4):671-695
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
13.
K. C. Hansen T. Bagdonat U. Motschmann C. Alexander M. R. Combi T. E. Cravens T. I. Gombosi Y.-D. Jia I. P. Robertson 《Space Science Reviews》2007,128(1-4):133-166
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric
distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion).
Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well
as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over
the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present
results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near
perihelion. 相似文献
14.
15.
Daniel B. Reisenfeld Roger C. Wiens Bruce L. Barraclough John T. Steinberg Marcia Neugebauer Jim Raines Thomas H. Zurbuchen 《Space Science Reviews》2013,175(1-4):125-164
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition. The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003). 相似文献
16.
L. A. Frank K. L. Ackerson J. A. Lee M. R. English G. L. Pickett 《Space Science Reviews》1992,60(1-4):283-304
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere. 相似文献
17.
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories 总被引:1,自引:0,他引:1
A. B. Galvin L. M. Kistler M. A. Popecki C. J. Farrugia K. D. C. Simunac L. Ellis E. Möbius M. A. Lee M. Boehm J. Carroll A. Crawshaw M. Conti P. Demaine S. Ellis J. A. Gaidos J. Googins M. Granoff A. Gustafson D. Heirtzler B. King U. Knauss J. Levasseur S. Longworth K. Singer S. Turco P. Vachon M. Vosbury M. Widholm L. M. Blush R. Karrer P. Bochsler H. Daoudi A. Etter J. Fischer J. Jost A. Opitz M. Sigrist P. Wurz B. Klecker M. Ertl E. Seidenschwang R. F. Wimmer-Schweingruber M. Koeten B. Thompson D. Steinfeld 《Space Science Reviews》2008,136(1-4):437-486
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided. 相似文献
18.
The Ionization Gauge Investigation for the Streak Mission 总被引:1,自引:0,他引:1
J. H. Clemmons L. M. Friesen N. Katz M. Ben-Ami Y. Dotan R. L. Bishop 《Space Science Reviews》2009,145(3-4):263-283
19.
B. H. Mauk J. B. Blake D. N. Baker J. H. Clemmons G. D. Reeves H. E. Spence S. E. Jaskulek C. E. Schlemm L. E. Brown S. A. Cooper J. V. Craft J. F. Fennell R. S. Gurnee C. M. Hammock J. R. Hayes P. A. Hill G. C. Ho J. C. Hutcheson A. D. Jacques S. Kerem D. G. Mitchell K. S. Nelson N. P. Paschalidis E. Rossano M. R. Stokes J. H. Westlake 《Space Science Reviews》2016,199(1-4):471-514
20.
Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth’s radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch vehicle and the overall mission design will be presented, and the plan for space weather data broadcast will be introduced. 相似文献