首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
潜艇在执行战备值班任务时,艇载固体火箭发动机要遭受复杂环境引起的随机振动载荷作用。在振动载荷长期作用下,会引起固体发动机疲劳损伤导致性能下降。以某固体火箭发动机为例,计算了艇载振动载荷作用下发动机装药的应力应变分布。通过分析计算结果,选取了容易出现问题的两条路径和一个截面,并根据Mises应力和最大剪切应力两种准则,确定了发动机药柱三个危险部位。计算得到了危险部位Mises应力和剪切应力随时间变化曲线。利用雨流计数法对危险点A的Mises应力和危险点C的剪应力循环进行了研究。研究表明,艇载固体发动机装药不可能由于瞬时受力超过极限临界值而发生破坏,振动载荷长期作用下会导致发动机装药累积损伤。危险部位的加载应力循环幅值大多数集中在小应力幅值对应区域。  相似文献   

2.
复合材料壳体发动机推进剂药柱立式贮存应力分析   总被引:6,自引:1,他引:6  
固体火箭发动机(SRM)推进剂药柱在立式贮存时要承受两种主要栽荷联合作用,即固化降温趋于平衡后的长期温差热载荷以及轴向的重力载荷作用。根据推进剂的材料特性以及不同的加载条件,采用线弹性理论,分别进行了SRM药柱在两种载荷作用下的三维有限元应力、应变计算,对药柱及其界面的危险部位重点进行了分析。  相似文献   

3.
针对固体火箭发动机撞击安全性问题,采用数值分析方法,建立了某两型高能固体火箭发动机轴向与径向撞击模型,完成了不同速度、不同撞击角度下的发动机安全性分析计算,得到了在不同撞击条件下固体火箭发动机推进剂的燃烧、爆炸等反应特点。对比相同工况下的火箭撬试验结果,计算结果与实际试验接近,验证了数值模型及参数的正确性。利用已验证的模型和参数,采用相同的计算方法,通过对模型在不同速度下进行多次仿真计算,得到两型发动机的撞击临界速度。研究表明,对于高能固体推进剂固体火箭发动机,随着尺寸与装药量增大,其撞击安全性降低,在相同尺寸时,径向撞击比轴向更容易发生反应。研究结果为高能固体火箭发动机的设计及撞击安全性分析提供了参考。  相似文献   

4.
根据大长径比固体火箭发动机轴向振动试验任务需求,将质量管理的理念融入到大长径比固体火箭发动机轴向振动试验方法创新研究当中,通过应用亲和图、箭条矢线图、PDPC法等质量工具,结合方案分析论证、仿真分析、试验验证等手段,准确完成大长径比固体火箭发动机轴向振动试验,实现了预期的目标。  相似文献   

5.
大型分段式固体火箭发动机点火瞬态过程研究   总被引:1,自引:0,他引:1  
通过建立固体火箭发动机点火瞬态数学模型,对某大型分段式固体火箭发动机工作初期小火箭式点火装置的火焰喷射方式、分段对接部位火焰传播过程以及前后翼燃面的传播过程等进行数值计算研究。计算结果表明,发动机点火过程中,燃烧室内的流动顺畅,没有出现压强异常振荡现象,点火初期的火焰冲击对分段对接部位的绝热结构影响很小,但整个后翼槽药面全部点燃用时在整个火焰传播期用时占比过大。数值计算结果与全尺寸发动机地面热试车结果对比表明,数值计算点火平衡压强、压强爬升时间以及升压速率与地面热试车结果吻合性好。  相似文献   

6.
考虑了固体火箭发动机点火过程压力分布的瞬态非均布特性,并以函数形式进行描述,结合三维粘弹性有限元法,计算了固体火箭发动机点火工况下的结构完整性。采用Latin超立方抽样方法,考虑药柱泊松比的分布为截断形高斯分布,对药柱泊松比进行随机抽样;利用泊松比的随机抽样结果,分别计算固体火箭发动机点火工况下的结构完整性;统计计算结果,分析泊松比随机分布对固体火箭发动机在瞬态非均布载荷作用下的结构完整性的影响。计算结果表明,药柱Mises应变受泊松比随机分布影响较小,且应变值与泊松比成线性递增关系,这与均布载荷下得到的结论完全相反。在对固体火箭发动机点火工况进行结构完整性分析时,应充分考虑点火过程压力传播的瞬态非均布特性。  相似文献   

7.
为了对高能固体火箭发动机进行冲击安全性评价,进行了?480 mm×640 mm高能发动机的火箭橇冲击试验,试验结果表明,高能发动机在冲击作用下存在无反应、燃烧和爆炸3个反应级别,且明显受到推进剂损伤程度的影响,测试获得了各反应级别对应的冲击速度区间,并分析了推进剂损伤对反应剧烈程度的影响规律。建立了高能发动机冲击起爆的数值仿真模型,该模型基于计算单元压力大小作为是否起爆的判据,可用于分析冲击起爆的初始位置,计算结果与试验基本吻合,验证了仿真模型的正确性。该项研究可为高能发动机冲击安全性研究与评价提供参考。  相似文献   

8.
为了研究固体火箭发动机的外压承载能力,了解药柱对燃烧室外压承载能力的贡献,文章对设计的模拟壳体和燃烧室进行了外压极限试验,得到了临界外压屈曲载荷.同时采用有限元软件进行了模拟壳体/燃烧室的外压稳定计算,计算结果与试验结果吻合较好.试验和计算结果都表明:虽然推进剂药柱模量较低,但其对燃烧室外压承载能力贡献较大.在固体发动机外压工况下的设计中,外压载荷指标不能仅分配给壳体,还需要综合考虑壳体与药柱的承载能力.  相似文献   

9.
根据中能固体火箭发动机的自毁爆炸特点及发动机自毁模拟试验的结果。结合过去固体火箭发动机的研制经验。提出了中能固体发动机不点火自毁爆炸危险性的计算方法。并对三级火箭固体火箭发动机不点火自毁时的爆炸TNT当量,碎片飞散距离和冲击波超压安全距离进行了计算和分析,为导弹自毁爆炸危险性分析提供了参考。  相似文献   

10.
喉栓式变推力固体火箭发动机内弹道调节特性   总被引:2,自引:0,他引:2  
发展了一套电动伺服驱动的喉栓式变推力固体火箭发动机试验系统,研制了喉栓式变推力固体火箭发动机,进行了喉栓式变推力固体火箭发动机内弹道调节特性试验.试验研究表明,耐烧蚀喉栓的轴向运动可实时调节发动机内弹道特性,目前已实现压强的四级调节;发动机内弹道变化相对喉栓运动有一定延迟,但其延迟可为工程所接受.  相似文献   

11.
固体火箭发动机药柱主动段飞行时应力应变分析   总被引:2,自引:0,他引:2  
为了探讨固体火箭发动机药柱主动段飞行时的形变、应力和应变变化规律,以星形药型发动机为例,采用三维粘弹性有限元法,根据推进剂药柱的燃烧规律,通过计算发动机药柱在整个工作过程中不同烧蚀情况下各构成部分的结构响应,得到了主动段飞行时发动机药柱在不同环境温度、燃气内压与轴向过载联合作用下位移、应力和应变场随时间的变化规律。结果表明,低温点火发射时,内压增压至峰值时为发动机最危险时刻。  相似文献   

12.
利用发动机地面试验结果,引入广义的压强系数和推力系数,计算了发动机的特征速度、喷管喉部面积等参数。在此基础上利用随机试件和标准发动机的相关参数预示了发动机的压强、推力、流量及其积分。通过算例可以看出。此发动机内弹道性能工程预示方法简单实用,预示精度满足要求。  相似文献   

13.
固体火箭发动机药柱表面裂纹分析   总被引:3,自引:0,他引:3  
为了分析含表面裂纹的固体火箭发动机药柱在温度、燃气内压与轴向过载联合作用下的扩展情况,在固体火箭发动机的危险截面上沿危险方向预设表面裂纹。采用有限元方法,在裂纹尖端构建三维奇异裂纹元,模拟裂纹扩展,分别计算随着裂纹扩展所对应裂纹深度的应力强度因子,得到了应力强度因子随裂纹深度的变化规律。根据应力强度因子的变化规律,探讨了发动机药柱裂纹扩展的趋势。  相似文献   

14.
为了分析固体发动机药柱在长期自重载荷作用下的位移水平,采用加速老化试验,得到该推进剂松弛模量随贮存时间的变化规律;考虑固体导弹发动机的实际贮存情况,探讨了有限元计算中处理发动机滚转的方法;应用三维粘弹性有限元分析方法,对贮存一定时间后的发动机进行了数值仿真,从中获得发动机药柱在长期自重载荷作用下的位移情况。计算结果表明,固体发动机每0.5 a定期翻转,蠕变基本回复到原来的3%以内,药柱的位移增加不大,说明贮存过程中每0.5 a翻转1次是一种好方法,可为固体发动机的设计和使用提供参考。  相似文献   

15.
张斌兴 《上海航天》2007,24(5):62-64
基于ANSYS软件对某固体火箭发动机(SRM)的热结构进行了有限元分析。计算了潜入式喷管瞬态温度场和应力场,用间接耦合解法进行热-应力耦合分析。结果表明:计算值与实测结果较吻合,可为SRM的热结构分析提供一种实用快捷的计算方法。  相似文献   

16.
固体发动机柔性喷管扩张段刚度分析   总被引:2,自引:0,他引:2  
基于某发动机柔性喷管结构,用弹簧模型替代柔性接头,建立计算模型,对不同控制力作用下的柔性喷扩张段支耳的轴向和径向刚度进行了三维有元分析计算,本计算分析,对固体发动机推力向量控制有一定的参考价值。  相似文献   

17.
固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析   总被引:12,自引:4,他引:12  
为了判断固体发动机药柱包覆层与推进剂界面脱粘裂纹在燃气内压和轴向过栽联合作用下的稳定性,以翼锥药型并含前后伞盘的固体发动机为例,应用有限元方法,建立界面脱粘的三维有限元计算模型,在界面脱粘裂纹尖端设置三维奇异裂纹元,模拟裂纹扩展。通过在包覆层与推进剂界面上设置不同深度的脱粘,分别计算不同深度时脱粘裂纹的应力强度因子,得到裂纹应力强度因子随脱粘深度的变化规律,由此判断裂纹的稳定性。  相似文献   

18.
以固体发动机药柱内存在的楔形裂纹为研究对象,采用三维流场控制方程,应用有限体积法计算了发动机点火启动阶段裂纹腔内的对流燃烧过程。在裂纹腔侧壁被点燃前,裂纹腔内的燃气压力基本呈均匀分布,且约等于燃烧室燃气压力;在裂纹腔侧壁被点燃后,燃气压力逐渐呈现出上部低、下部高的分布,且腔内平均压力远高于燃烧室内燃气压力;裂纹腔侧壁开口边缘处的推进剂首先达到点火温度开始燃烧,燃面迅速向内推进,燃气以非常高的速度向外流出裂纹腔。  相似文献   

19.
飞行过载下燃烧室凝相粒子沉积特征数值研究   总被引:1,自引:0,他引:1  
固体发动机燃烧室部分凝相粒子在飞行过载作用下产生沉积,严重影响发动机工作性能。通过确定燃烧室粒子参数和建立燃烧室内两相流场数值方法,获得了发动机不同轴向过载下粒子运动及沉积规律。与试验数据进行对比分析,验证了计算方法的准确性。数值结果表明,随着轴向过载增大,后封头及喷管潜入段粒子沉积质量逐渐增大。沉积粒子粒径大于凝相粒子平均值,即粒子粒径越大,越容易沉积。轴向过载增大,减小了粒子在发动机内部的驻留时间,凝相粒子平均驻留时间均大于0.13 s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号