首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By expressing the open-loop response voltage as a Fourier series in terms of the phase-tracking error and then utilizing a very useful mean-value expression, we assess the performance of loops suited to recovering the carrier of four-phase (quaternary) and two-phase (binary) phase-shift-keyed (QPSK and BPSK) signals. At high signal to noise ratios (SNRs) they perform comparably, but at low SNRs the former's performance deteriorates much more rapidly. The loop's ability to maintain the carrier frequency despite the noise accompanying the PSK signal is measured by the mean and the variance of the oscillator's control voltage. In particular, Spilker's loop for QPSK and the Costas loop for BPSK signals are discussed.  相似文献   

2.
The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop(PLL), which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals,respectively. With these critical standard deviations, lock thresholds are increased from à12 andà4 d B to 3 and à2 d B, respectively.  相似文献   

3.
In this paper we present a suboptimal algorithm for modulation classification to classify the general M-ary phase-shifted keying (MPSK) signal buried in additive white Gaussian noise (AWGN). We first derive the phase density functions of MPSK signals, then develop the required statistics for modulation classification and demonstrate a classifier for CW, binary phase-shifted keying (BPSK), quadrature phase-shifted keying (QPSK), and 8PSK. The structure of the proposed classifier is flexible and is easy to expand. The performance of classifier is evaluated in terms of the probability of successful classification. An example (BPSK/QPSK case) is provided to demonstrate the capabilities of the proposed classifier. The performance is evaluated through the theoretical approach and the Monte Carlo computer simulations and is compared with that previously published in 1992. It is shown that the performance of the proposed classifier is better. Further improvement in performance can be obtained by increasing the length of observation interval.  相似文献   

4.
Quasiconstant envelope phase-shift keying (PSK) is analyzed to assess its ability to overcome nonlinearities caused by fully saturated RF power amplifiers in communications systems. These modulations can achieve bit error rate (BER) performance comparable to linear BPSK in additive white Gaussian noise (AWGN) channel. Quasiconstant envelope offset quadrature PSK (OQPSK) is presented as a design example. At a BER = 10/sup -5/, the SNR degradation caused by fully saturated power amplifiers is 0.1 dB. The simulated BER matches analytically derived results. For a communications system employing the quasiconstant envelope OQPSK and a rate 1/2 convolutional code with K = 7, the demodulation performance is degraded by 0.25 dB at a BER = 10/sup -5/ when a fully saturated power amplifier is employed.  相似文献   

5.
针对传统示波器观察法测量BPSK(Binary phase shift keying,二进制相移键控)调制器时延时存在整码元模糊、噪声敏感、载波初相要求苛刻及标定精度低的缺点,利用软件无线电的相关处理技术,提出一种精密的BPSK调制器时延标定算法.通过高速数字示波器对BPSK调制器的输入基带信号和输出载波调制信号进行双通道同步过采样,对输出信号与输入信号采样值进行循环相关,根据相关峰值对应的样本点序号以及连接电缆的校准时延,计算得到BPSK调制器时延.仿真和试验验证表明:提出的算法不受载波初始相位影响,时延标定上限可达1个伪随机码周期,而且低载噪比情况下也能得到准确结果.数字示波器的通道采样率为10 GSa/s时,采用提出的算法进行BPSK调制器时延标定,标定结果的不确定度可以达到0.2 ns.  相似文献   

6.
本文基于一种数字解调系统分析了在AWGN信道中载波相位噪声对Trellis-Coded MPSK的影响。同时利用存在载波相位噪声条件下的误码率上界公式,运用仿真工具simulink对未编码情况下的QPSK与Trellis-Coded MPSK及级联卷积编码情况下的QPSK与Trellis-Coded MPSK进行了蒙特卡罗仿真。分析结果表明:TCM-8PSK具有较强的载波相位噪声抑制能力。该结果对于进一步研究TCM-8PSK在卫星数传系统中的应用具有重要的参考价值。  相似文献   

7.
姚彦鑫  杨东凯  张其善 《航空学报》2010,31(10):2004-2009
 研究全球定位系统(GPS)多径信号估计的问题。通过分析自适应滤波器的原理,建立了数字中频信号处理的数学模型,提出一种用自适应滤波实现GPS多径幅度、码相位和载波相位估计的方法。该方法采用不同延迟的伪随机序列对信号进行解扩、解调和累加,得到了作为期望信号的系列自适应滤波相关值。对该方法与其他3种方法进行了理论上的分析比较,得出本方法具有信噪比高、自适应滤波性能好、带有码相位信息和不存在载波模糊度问题等优点。根据各种滤波器算法的特点和本应用的需求,给出了选用递归最小二乘算法实现的方法。通过计算机仿真,验证了提出的方法能够在14 dB的信噪比下,以1个采样间隔的时间延迟分辨率和0.005周的载波相位估计精度估计出GPS L1的多径信号。  相似文献   

8.
研究了GNSS导航接收机在干扰源条件下的干扰检测和识别技术。除常见的卫星干扰如脉冲干扰、扫频干扰、BPSK干扰、宽带高斯白噪声干扰外,还添加了QPSK和8PSK干扰进行建模分析,并提取了常见的特征参数,如信号3dB带宽和频谱峰度等。通过研究,高阶累积量被提取作为MPSK干扰类内识别的特征参数。研究了基于决策树和BP神经网络等分类器算法的干扰盲识别,并分析比较了这些分类算法的识别准确率,为抗干扰领域的研究提供了重要参考。  相似文献   

9.
刘荣科  李满庆  侯毅 《航空学报》2012,33(4):715-721
 针对目前编码辅助载波同步算法中复杂度较高、延时大的问题,提出了引入辅助停止判决机制的编码辅助载波同步算法。在现有的编码辅助载波同步结构基础上,该算法能对环路信噪比(SNR)进行实时判定,在环路SNR满足限定条件后提前停止编码辅助载波同步迭代,而不影响译码性能。采用新的相位估计方式估计含相位噪声的载波相位,提升了该条件下的环路信噪比。仿真采用码率为1/2的低密度奇偶校验(LDPC)码作为编码方式,结果表明:在误码率为10-5时,该算法减少了约50%的编码辅助载波同步迭代次数;在含相位噪声的信号条件下,与理想解调译码相比,性能损失不超过0.15 dB。  相似文献   

10.
A general expression of the error probability on an M-ary coherent phase-shift-keyed (MCPSK) signal purturbed by a noisy reference carrier, multiple interferences, and additive Gaussian noise is presented taking into account the frequencey divider in the carrier recovery circuit. First, a new expression for the probability density function (pdf) of the phase of a composite wave of signal, multiple interferences, and additive Gaussian noise is derived. Then this result and a pdf of the phase error modified from the Tikhonov distribution are used to obtain the erro probability of an MCPSK detector. In addition, the comparison between the error probabilities with and without the frequency divider is given, and it is found that the estimation is more pessimistic when the frequency divider is included.  相似文献   

11.
The effect of adjacent channel interference on the probability of error in a binary bandpass communication system with an integrating and dumping detector is investigated. Narrowband filters are assumed in the receiver of the main signal and transmitters of both main and interfering signals. Plots of the probability of error as a function of signal to noise ratio in the main channel or as a function of carrier frequency difference between the main and interfering signals are presented, assuming that the filters are of the Butterworth type. These figures are helpful in the selection of minimal frequency spacing of adjacent channels.  相似文献   

12.
Analyses are presented of the performance of binary and M-ary coherent and noncoherent communication systems operating in the impulsive atmospheric radio noise environment. The receiver is usually a maximum likelihood detector for white Gaussian interference and therefore has the form of a parallel bank of matched filters followed by decision circuitry. By employing a Poisson or generalized Shot noise model for the impulsive noise with a suitable probability density function (pdf), closed-form expressions and bounds of error probabilities for M-ary noncoherent and coherent amplitude-shift keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) systems are obtained and the results discussed.  相似文献   

13.
The performance of binary phase-shift-keyed (BPSK), binarydifferential phase-shift-keyed (DPSK), and quadrature phase-shift-keyed(QPSK) communication systems that use adaptive arrayantennas for interference rejection is examined. The case where thedesired signal is corrupted by continuous wave (CW) interference isspecifically addressed. The performance of the adaptive array andthe ideal BPSK, DPSK, and QPSK detectors are evaluated first andthe results of these calculations are combined to determine theoverall system performance. The bit-error probability at the systemoutput is used as the performance measure. Several examples arepresented which illustrate the effects of signal powers, arrivalangles, frequencies, and the array input bandwidth.  相似文献   

14.
An analysis of the behavior of a second-order phase-locked loop is presented when an unwanted signal is added to the useful signal. Both signals are sinusoidal and unmodulated, and the analysis is made in the absence of additive noise. When the loop remains locked on the useful signal, a parasitic signal exists at the phase detector output. This signal produces a parasitic phase modulation of the VCO and a static phase error in the loop. The parasitic signal amplitude, the parasitic phase modulation index, and the static phase error are calculated. A necessary condition for the loop to remain in lock is derived. When the loop is initially unlocked, locking can occur either on the useful signal or on the unwanted signal, depending on the amplitude ratio and the frequency difference of the two signals. A formula allowing one to compute the pull-in time is obtained. When the loop locks on the useful signal, acquisition can be slower or faster than in the absence of an unwanted signal. The same phenomenon is observed when the loop locks on the unwanted signal.  相似文献   

15.
为实现对通信信号的实时监测,提出一种带内隐藏干扰检测方法。该方法先利用解调结果重构期望信号,然后通过时延估计及自适应滤波使其与接收信号中的有用信号在时间、幅度和相位上尽量保持一致,最后利用相减式信号抵消技术将其从接收信号中消除,能够在不中断通信业务的前提下检测出信号带宽内隐藏的干扰。仿真结果表明,当信干比不低于6 dB、信噪比不低于3 dB时,期望信号、干扰信号与各自原信号的相似系数均能达到0.9以上,提取的干扰信号非常准确。将利用文中方法估计出的干扰抵消后,信号的星座图也得到了显著的收敛。  相似文献   

16.
A class of multilevel linear-modulation data-transmission systems, over unknown, slowly time-varying, and bandlimited channels is considered. It is shown how sequence estimation in the presence of Gaussian noise and intersymbol interference can be carried out by means of a discrete Kalman estimator. Moreover, the receiver can be provided with data-aided adaptive loops for performing channel identification, carrier recovery, and timing extraction. A computational method is presented to evaluate the average probability of error of the overall system in the presence of inter-symbol interference, additive noise, and phase-and sampling-synchronization errors. The method is based upon nonclassical one-and two-dimensional quadrature rules, which are outlined in the Appendix. As an example, numerical performance results related to a phase-shift-keying (PSK) system are given. The results are obtained by means of general-purpose and system-oriented computers.  相似文献   

17.
It is considered by some that minimum shift keying (MSK) is spectrally more efficient than quaternary phase-shift keying/offset quadrature phase-shift keying (QPSK/OQPSK). An analytical method is presented here for determining the detection efficiencies of MSK and QPSK/OQPSK when the constant-envelope signal is passed through a set of filters and when the resulting signal is corrupted by Gaussian noise. The detection efficiency of MSK is compared with that of QPSK/OQPSK when a four-pole Butterworth filter is used as a transmit filter and for two different receive filter functions. When the two-sided 3-dB bandwidth of the transmit filter is between approximately 1.00/T and 1.50/T, it is shown that the detection efficiency of MSK is not substantially different from that of QPSK/OQPSK. For more severe bandlimiting of the signal, the performance of MSK is shown to be inferior to that of QPSK/OQPSK. It is, therefore, concluded that MSK does not have significantly better detection efficiency when the effect of bandlimiting filters is taken into account.  相似文献   

18.
In the vicinity of reflecting objects, a VOR receiver picks up both the direct and reflected signals. This summation adds both amplitude and phase modulation to the signal that were not present at the transmitter. The error due to this phase modulation is fairly evident since the desired directional information is transmitted as a relative phase. What is not so evident is the fact that the amplitude modulation can also produce a phase error. This happens when asymmetrical filters are used to process the amplitude-modulated signal. The asymmetrical filter converts some of the amplitude-modulated sidebands into phase modulation which is recorded as a direct phase error.  相似文献   

19.
SNR-based multipath error correction for GPS differential phase   总被引:4,自引:0,他引:4  
Carrier phase multipath is currently the limiting error source for high precision Global Positioning System (GPS) applications such as attitude determination and short baseline surveying. Multipath is the corruption of the direct GPS signal by one or more signals reflected from the local surroundings. Multipath reflections affect both the carrier phase measured by the receiver and signal-to-noise ratio (SNR). A technique is described which uses the SNR information to correct multipath errors in differential phase observations. The potential of the technique to reduce multipath to almost the level of receiver noise was demonstrated in simulations. The effectiveness on real data was demonstrated with controlled static experiments. Small errors remained, predominantly from high frequency multipath. The low frequency multipath was virtually eliminated. The remaining high frequency receiver noise can be easily removed by smoothing or Kalman filtering  相似文献   

20.
A method for computing the PAM representation for weak continuous phase modulation (CPM) is presented and applied to the modulation defined in the enhanced flight termination system (EFTS) standard. The pulse-amplitude modulation (PAM) representation was used to formulate a reduced-complexity detector whose performance is within 0.7 dB of maximum likelihood detection and 5.6 dB better than limiter-discriminator detection in the additive white Gaussian noise (AWGN) environment. The complexity of the reduced-complexity detector is less than 25% that of the maximum likelihood detector but, unlike the limiter-discriminator detector, requires a carrier phase PLL. In the presence of phase noise, the reduced-complexity detector outperforms limiter-discriminator detection when the RMS frequency deviation due to phase noise is less than 10% of the bit rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号