首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kai-Uwe Schrogl   《Space Policy》1998,14(4):247-249
On 19-20 May 1998 the German Aerospace Center (DLR) hosted the Space Agency Forum (SAF) at Berlin. The meeting was dedicated to the preparation of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III), which will take place in July 1999. It was attended by 16 space agencies and international organisations from Europe, North- and South America as well as Asia. In this report, first UNISPACE III will be introduced and then the results of the SAF meeting will be reported.  相似文献   

2.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

3.
This article discusses the development, and the current and future work, of the UN Office for Outer Space Affairs. The Office is active both as a source of information, education and training on space and as a secretariat to COPUOS and its Subcommittees; it also performs a role in the monitoring and implementation of various space-related legal treaties. Presently—and as part of the drive to use space to improve life on Earth—the bulk of its work is guided by the Vienna Declaration produced at UNISPACE III.  相似文献   

4.
Perek  Luboš 《Space Debris》2000,2(2):123-136
Rules for activities in outer space are agreed upon in the Committee on the Peaceful Uses of Outer Space of the United Nations. Several international treaties have been adopted in the 1970s, that is, at a time before space debris became a concern for the international community. In the years 1979–1988 numerous documents were prepared by the UN Secretariat on space debris, but no official discussions of the problem were initiated by states members of the COPUOS. First proposals for introducing the matter to the UN appeared around 1988, after important studies on the subject were published by states and leading intergovernmental organizations. Also the International Telecommunication Union became concerned about the proliferation of space debris in the geostationary orbit and adopted in 1993 a recommendation to restrict the generation of debris and to re-orbit satellites approaching the end of their active lives into disposal orbits beyond the belt populated by active satellites. In 1994, the UN started discussing scientific and technical aspects of space debris. In the following years, with the assistance of experts from prominent space agencies, it elaborated a Technical Report on space debris. Legal aspects of the problem have not yet begun being discussed because the necessary consensus among states members of the COPUOS has not yet been achieved. Very recently, the UN received first information on a wider subject, space traffic management.  相似文献   

5.
A powerful statistical tool, paired-comparison, was tested as a method to determine the relative value American people place on two possibly competing paradigms in the United States Space Program: “Space as a Place to Explore” and “Civil and Commercial Uses of Space”. A limitation of the results, but not the methodology, is the participants were college students, not “voting” adults. Reliability and validity of items were developed and tested in two studies suggesting that the paired-comparison method is a reliable and powerful tool for measuring the relative value the public may place on programs within the US Space Program.  相似文献   

6.
The Moon is a major target in expanding human activity in Space. President Bush has called for a Space Exploration Initiative. European participation may depend on achieving an affordable programme and identifying distinct elements for non-U.S. participation. Affordability requires that all participants can influence the “cost to user” of Base operations. If lunar activity is to evolve towards resource exploitation, there will need to be a progressive reduction in operating costs. European interest would prefer participation that allowed longer-term independent interests. The paper addresses how non-U.S. agencies could contribute valuable elements to an International Moon Base while meeting three criteria:

• — Keep a core infrastructure under U.S. control.

• — Avoid a total reliance by the partner on U.S. services.

• — Allow the partner to evolve towards an eventual, semi-autonomous or autonomous capability.

The paper illustrates possible implications of meeting these constraints through “mini infrastructures” combining several elements to form a working architecture. It is concluded that any European participation in an International Moon Base Programme should contain both Space transport and surface elements.  相似文献   


7.
A half-day meeting on the role of satellites in combating climate change was added on to the eleventh annual European Interparliamentary Space Committee meeting in London, October 2009. Organized by the UK Parliamentary Space Committee and the European Space Policy Institute, the meeting's four speakers covered a range of issues, before engaging in discussion with questions from the floor. The main points raised are presented below.  相似文献   

8.
The work of the UN Committee on Peaceful Uses of Outer Space was intensified following the accidental re-entry of the Soviet Cosmos 954 nuclear-powered satellite in 1978. But anyone thinking the purpose of the Committee's activity was to prevent the recurrence of such an accident will have been disabused by the USA's recent repudiation of the guidelines for the safe use of nuclear power supplies. The UN is good for political manoeuvring, argues the author of this Viewpoint, but real progress towards the safer use of nuclear power in space will originate elsewhere.  相似文献   

9.
朱毅麟 《上海航天》2001,18(1):31-34,38
介绍了国际机构间碎片协调委员会提出的关于地球静止轨道(GEO)空间碎片问题的研究结果和碎片处置的建议,主要内容包括:GEO与GEO环的概念、EGO上物体现状,EGO空间碎片处置的基本原则和8条具体处置措施建议。该建议已于2000年2月提交联合国和平利用外层空间委员会科技小组委员会第37届会议。  相似文献   

10.
The United Nations Programme on Space Applications was established in 1971 to assist countries in making full use of the benefits of space technology and its applications for social and economic development. Since its inception the programme has organized numerous training courses, workshops, seminars and conferences and provided funding support for more than 10?000 experts, mainly from developing countries, to participate in those activities. The programme has continuously evolved over four decades, taking into account the latest developments in the field of space activities, to best serve the capacity-building needs of countries and to help ensure that space-based solutions contribute to improving life on Earth. This report describes the status and direction of the UN Programme on Space Applications as recommended for approval by the UN’s Committee on the Peaceful Uses of Outer Space (UNCOPUOS) Scientific and Technical Subcommittee at its 47th session held in Vienna in February 2010.  相似文献   

11.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

12.
The X-38 Project forms part of the “X” prototype vehicle family developed by the United States. Its development was initiated by NASA to prepare the Crew Return Vehicle (CRV). The European participation in the X-38 Program has been significantly extended since the start of the X-38 cooperation in 1997 and is realized by ESA's “Applied Reentry Technology Program” and the German/DLR “Technologies for Future Space Transportation Systems” (TETRA) Project. European contributions to the X-38 Vehicle 201, (V-201) can be found in all technical key areas. The orbital flight and reentry with the X-38 V-201 will conclude the X-38 project in 2002.The CRV will be used from about mid-2005 as ’ambulance‘, ’lifeboat‘ or as alternate return vehicle for the crew of the International Space Station. Recognizing the very productive and mutually beneficial cooperation established on X-38, NASA and ESA have decided to continue this cooperation into the development of the operational CRV. The Phase C/D will be completed shortly after the Critical Design Review, scheduled for August 2002. The CRV production phase will start in October 2002 and will cover production of four CRV vehicles, ending in 2006.Based on the objective to identify a further evolution potential of the CRV towards a Crew Cargo Transfer Vehicle (CCTV), NASA has implemented upgrade studies in the CRV Phase C/D.  相似文献   

13.
Many of the problems that the Space Shuttle programme has had in meeting its goals of routine and cost-effective access to space can be traced to various characteristics of the decision to develop the Space Shuttle. That decision was made through a process of bureaucratic politics, with little attention given to future users of the Shuttle. The design chosen for development was a poor compromise between demanding Pentagon and NASA requirements and a limited budget.  相似文献   

14.
Space at Surrey has developed over 25 years from very modest beginnings in 1974 to an international space centre by 1998. It has pioneered small satellites and succeeded in launching 14 low cost but sophisticated microsatellites over the course of two decades. In the 1990s, small satellites have become fashionable—but this was not always so! This paper describes the 25 years history of “Space at Surrey”.  相似文献   

15.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

16.
This declaration was made at the International Conference on Aerospace Complex Conversion, organized by the United Nations in Moscow, 12–16 October 1992. It provides a follow-on to the UN conference on ‘Conversion - opporunities for development and environment’ held in Dortmund, Germany, 24–27 February 1992, and reported in the August 1992 issue of Space Policy by Professor K.H. Böckstiegel, who chaired the Plenary Session in Moscow.  相似文献   

17.
Although NASA's Space Shuttle is largely dedicated in the near term to Space Station assembly, 10–16 day flight opportunities still abound for spacecraft technology demonstration payloads, and experiments for the established earth and space science communities. This paper will present the latest developments of SPACEHAB flight systems in order to accommodate the flight needs of these communities on the Space Shuttle today and the Space Station tomorrow. In particular, some examples of payloads from these disciplines will be introduced together with the accommodation and experiment objectives.  相似文献   

18.
Preparations for the third UN Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) were intense. The conference itself was a success. But what forms will the follow-up take? Just reading the 150-page report is an effort in itself. Having played a central part in the preparations and organization, Europe fully appreciates the need to build on the spirit of cooperation which emerged from UNISPACE III. In November 1999, the European States gathered to analyze the results of the conference and to set a course for their future participation in the United Nations Programme on Space Applications (UNPSA), which is mainly done through ESA, and for their participation in the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), which is done through coordination among ESA Member States. This article presents the authors’ personal accounts of the results of the European efforts around UNISPACE III and shows how ‘European foreign policy’ can work in international space policy. It also seeks to illustrate Europe's commitment to putting space technology to work for the benefit of development throughout the world.  相似文献   

19.
Future space systems, such as Columbus, the planned European contribution to the International Space Station, offer ample possibilities for microgravity research and application. These new opportunities require adequate user support on ground and novel operational concepts in order to ensure an effective utilization. Extensive experience in microgravity user support has been accumulated at DFVLR during the past Spacelab 1 and D1 missions. Based on this work, a Microgravity User Support Centre (MUSC) has been built and is active for the forthcoming EURECA-A1 and D2 missions, to form an integrated support centre for the disciplines life sciences and material sciences in the Space Station era. The objective of the user support at MUSC is to achieve:
• easy access to space experiments for scientific and commercial users,
• efficient preparation of experiments,
• optimum use of valuable microgravity experimentation time,
• cost reduction by concentration of experience.
This is implemented by embedding the MUSC in an active scientific environment in both disciplines, such that users can share the experience gained by professional personnel. In this way, the Space Station system is operated along the lines established on ground for the utilization of large international research facilities, such as accelerators or astronomical observatories. In addition, concepts are developed to apply advanced telescience principles for Space Station operations.  相似文献   

20.
On 16 November 2000, the Council of the European Space Agency (ESA) meeting at Ministerial level and the European Research Council of the European Union (EU) gathered in Brussels to adopt in parallel two resolutions on a European Strategy for Space. This political impetus indicates a clear motivation to support the further development of the European space sector, based on a much closer collaboration between the two European institutions, thereby exploiting their respective competencies and synergies. This paper presents some Spanish viewpoints relative to the common European Strategy for Space of the EU and ESA. Spain is supportive of the new strategy and the paper describes how its co-ordinated approach could be translated into action across various European programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号