首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈广东  黄雨泽  王媛 《航空学报》2019,40(4):322545-322545
以电磁波三维空间结构向量为参照的飞行器姿态/航向测量研究,可弥补空间参照物缺乏,丰富空间飞行器姿态/航向测量工具。本文根据各缺损电磁矢量传感器姿态位置与接收信号之间的变化规律,建立飞行器载电磁矢量传感器阵列导向矢量。根据协同导航的多个信号空间谱和最大化,实现平台姿态/航向测量。飞行器多位置的多个传感器共同测量姿态可避免遮挡,获得更高姿态精度的同时拓展了系统的适用领域。接收电磁信息完备状态下,不需导航信号,测绘平稳的杂波就能作为姿态基准。仿真试验验证了姿态估计的有效性。  相似文献   

2.
The radio science investigations planned for Galileo's 6-year flight to and 2-year orbit of Jupiter use as their instrument the dual-frequency radio system on the spacecraft operating in conjunction with various US and German tracking stations on Earth. The planned radio propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements will be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system used for these investigations is based on Voyager heritage but with several important additions and modifications that provide linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. Collaboration between the investigators and the space-craft communications engineers has resulted in the first highly-stable, dual-frequency, spacecraft radio system suitable for simultaneous measurements of all the parameters normally attributed to radio waves.  相似文献   

3.
DOA estimation for attitude determination on communication satellites   总被引:1,自引:1,他引:0  
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.  相似文献   

4.
The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations.  相似文献   

5.
卫星运行需要地面测控系统的支持.通过对某些卫星运行与地面测控系统支持方面的实际分析,总结其设计研制和协调中不足,研究卫星系统与地面测控系统的协调设计,并提出相应建议,为我国的卫星发展作一些借鉴.  相似文献   

6.
Describes the development of a system for inferring the position of uplink ground stations, using existing domestic satellites, with minimal disruption of normal operation. The system uses the differential time delay of a single uplink signal passing through two adjacent spacecraft to infer the relative position of the uplink transmitter. A system for the measurement of such differential time delays is described. Since this technique alone does not provide an unambiguous determination of uplink transmitter location, the use of an interferometer to resolve such ambiguities is discussed  相似文献   

7.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   

8.
The Applications Technology Satellite (ATS-6), the most powerful, most sophisticated, most versatile communications satellite flown to date, is the last of NASA's experimental satellites intended to demonstrate major advances in communications and spacecraft technology. It is a multipurpose, multidisciplinary spacecraft whose principal objectives were to demonstrate a large, unfurlable antenna structure and precise pointing and attitude control in the synchronous orbit The spacecraft carries 27 different experiments, 3 of which demonstrate users' applications of satellite communications. Significant advances in antenna technology, precise attitude control, materials technology, spacecraft structures, and thermal control have been successfully demonstrated. The most significant accomplishments of the ATS-6 mission are the demonstration of the practicality of satellite broadcasting to small, simple, inexpensive ground stations and the uses of this potential service in the solution of social problems involving education and health care. The success of these initial demonstrations has led ATS-6 experimenters and potential users to incorporate a Public Service Satellite Consortium dedicated to the provision of satellite broadcasting services for educational and health-care applications.  相似文献   

9.
The Lunar Reconnaissance Orbiter Laser Ranging Investigation   总被引:1,自引:0,他引:1  
The objective of the Lunar Reconnaissance Orbiter (LRO) Laser Ranging (LR) system is to collect precise measurements of range that allow the spacecraft to achieve its requirement for precision orbit determination. The LR will make one-way range measurements via laser pulse time-of-flight from Earth to LRO, and will determine the position of the spacecraft at a sub-meter level with respect to ground stations on Earth and the center of mass of the Moon. Ranging will occur whenever LRO is visible in the line of sight from participating Earth ground tracking stations. The LR consists of two primary components, a flight system and ground system. The flight system consists of a small receiver telescope mounted on the LRO high-gain antenna that captures the uplinked laser signal, and a fiber optic cable that routes the signal to the Lunar Orbiter Laser Altimeter (LOLA) instrument on LRO. The LOLA instrument receiver records the time of the laser signal based on an ultrastable crystal oscillator, and provides the information to the onboard LRO data system for storage and/or transmittal to the ground through the spacecraft radio frequency link. The LR ground system consists of a network of satellite laser ranging stations, a data reception and distribution facility, and the LOLA Science Operations Center. LR measurements will enable the determination of a three-dimensional geodetic grid for the Moon based on the precise seleno-location of ground spots from LOLA.  相似文献   

10.
编队飞行小卫星空间状态测量方法研究   总被引:1,自引:0,他引:1  
介绍了编队飞行小卫星特点,提出了小卫星空间状态测量方案。着重论述了星间相对状态自主测量方法,计算了伪码和载波相位跟踪环路、时钟基准频差以及测量设备延迟带来的星间相对距离测量误差,讨论了降低误差的方法。在对误差项进行综合分析后,得出相对距离测量误差可达到厘米级的结论。  相似文献   

11.
Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.  相似文献   

12.
《中国航空学报》2021,34(10):191-209
There exists an increasing need for precision measurement & pointing control and extreme motion stability for current and future space systems, e.g., Ultra-Performance Spacecraft (UPS). Some notable technologies of realizing Ultra-Pointing (UP) ability have been developed particularly for Ultra-accuracy Ultra-stability Ultra-agility (3U) spacecraft over recent decades. Usually, Multilevel Compound Pointing Control Techniques (MCPCTs) are deployed in aerospace engineering, especially in astronomical observation satellites and Earth observation satellites. Modern controllers and/or algorithms, which are a key factor of MCPCTs for 3U spacecraft, especially the jitter phenomena that commonly exist in a UPS Pointing Control System (PCS), have also been effectively used in some UP spacecraft for a number of years. Micro-vibration suppression approaches, however, are often proposed to deal with low-level mechanical vibration or disturbance in the microgravity environment that is common for UPS. This latter approach potentially is one of the most practical UP techniques for 3U tasks. Some emerging advanced Disturbance-Free Payload (DFP) satellites that exploit the benefits of non-contact actuators have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of UP technologies and/or methods which have been developed, mainly over the last decade, specifically for or potentially could be used for 3U spacecraft pointing control. The problems discussed in this paper are of reference significance to UPS and millisecond optical sensors, which are involved in Gaofeng Project, deep space exploration, manned space flight, and gravitational wave detection.  相似文献   

13.
14.
The design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation are described. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. The other uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location is obtained by using an appropriate combination of the two methods. A system for measurement of the required differential delays and phases and experimental work performed to demonstrate the feasibility of the location methods are described  相似文献   

15.
Three-Axes Attitude Determination of Spacecraft Using a Laser   总被引:1,自引:0,他引:1  
A new method for attitude determination of spacecraft is proposed. The distinctive feature of this method is the ability to determine with high accuracy three elementary angles of the attitude by detection of the electromagnetic wave transmission from a single point. The system consists of a transmitter of a linearly polarized laser beam on the earth (or spacecraft) and receiving equipment on a relevant spacecraft. When the system is used for geosynchronous satellites, the possible accuracies of determination are 10-4 rad or higher for the angles which correspond to roll and pitch, and 10-2 rad or higher for the angle which corresponds to yaw, with the period of 1 s. The system margin for atmospheric attenuation is estimated to be about 50 dB (midnight) to about 20 dB (midday) on the basis of commercially available components. Consequently, it becomes possible to orient antennas or detectors toward arbitrary points around the laser transmitting point on the earth with a high pointing accuracy.  相似文献   

16.
We have constructed a high-temperature super conductor-magnet momentum wheel for microsatellites and propose a micro high-temperature superconductor energy storage and attitude control system for nano/pico satellites. The momentum wheel for micro satellites has a mass of 1.1 kg with an angular momentum capacity of 3.5 J sec. It occupies a volume of 12.7 cm in diameter and 5 cm in height. It operates within the restricted power budget of a microsatellite with a total power supply of only 10 watts. It consumes less than 1 watt for sustenance. The micro high-temperature superconductor flywheel for nano/pico satellites has an angular momentum capacity of 0.083 Js and stores 2.32 kJ at 530 krpm. Its energy storage capacity is approximately 45 Wh/kg with an energy density of around 370 kJ/L. The HTS systems can perform the dual function of a power/attitude control system and are ideally suited for low Earth orbit energy storage, power generation, and attitude control of spacecraft.  相似文献   

17.
提出了一种在待测距离未知的情况下确定电波在空间单向传播时间的方法。该方法可以迅速地利用前一时刻已经测得的距离和距离变化率,导出下一时刻发送的无线电波到达航天器时其在空间的单向传播时间。利用该时间,可以确定航天器接收到信号时的大概位置。  相似文献   

18.
Flywheel Energy Storage Systems represent an exciting alternative to traditional battery storage systems used to power satellites during periods of eclipse. The increasing demand for reliable communication and data access is driving explosive growth in the number of satellite systems being developed as well as their performance requirements. Power-on orbit is the key to this performance, and batteries are becoming increasingly unattractive as an energy storage media. Flywheel systems offer very attractive characteristics for both energy storage, in terms of energy density and the number of charge/discharge cycles, and the important side benefit of spacecraft attitude control  相似文献   

19.
干涉测量宽带相关处理算法与验证   总被引:1,自引:0,他引:1  
阐述了一种用于航天器精确角位置测量的干涉测量宽带相关信号处理算法,通过仿真验证了算法的有效性,并搭建卫星干涉测量实验系统,采集某地球同步卫星信号进行宽带相关信号处理,获得清晰干涉条纹,准确估计出反映测站与卫星位置关系的时延观测量。结果表明宽带相关信号处理的估计时延与卫星信号链路标定时延、测距时延组成系统时延闭合回路,初步验证了干涉测量实验系统的有效性,为后续飞行任务中航天器高精度干涉测量积累了技术和经验。  相似文献   

20.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号