首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根据碳纤维复合材料制孔过程中产生的缺陷,自主磨制专用钻头——阶梯钻对碳纤维复合材料进行钻削实验,研究了在不同加工参数下阶梯钻钻削碳纤维复合材料的钻削力、孔出口质量、孔壁表面粗糙度,并与普通麻花钻头进行对比。结果表明:阶梯钻产生的钻削轴向力是麻花钻的一半,孔壁表面粗糙度值更小,孔出口没有明显的缺陷,阶梯钻适合钻削碳纤维复合材料。  相似文献   

2.
TC4钛合金深孔钻削过程中钻削温度高、排屑路径长,加剧刀具磨损,影响深孔加工质量和精度。为制定可用于实际生产的钛合金深孔钻削加工参数,开展TC4钛合金深孔枪钻加工试验。试验结果表明,钻削温度受钻削速度影响较大,进给量的影响不显著;孔径和圆度随着钻削速度的增加而增大,同轴度随着切削速度增加而先增大后减小;孔的表面粗糙度随着钻削参数的增加而增大,且大参数下深孔表面质量进一步恶化;各组试验加工硬化层在30μm左右,且随着钻削速度增加,切屑挤压变形严重。综合分析后制定的干切削条件下TC4钛合金深孔枪钻的钻削速度为20m/min,进给量为0.08mm/r。  相似文献   

3.
微晶玻璃加工特性及机理研究   总被引:1,自引:0,他引:1  
孙志焱  粱敏 《惯导与仪表》2002,(2):56-59,63
本文结合激光陀螺生产实际,针对激光陀螺腔体的材料——微晶玻璃的加工特性及机理进行了探讨。  相似文献   

4.
振幅对低频振动钻削CFRP/钛合金叠层材料的影响   总被引:1,自引:0,他引:1  
碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)和钛合金组成的叠层材料因其出色的性能被广泛应用在航空航天领域。但两种材料的加工性能差异较大,在叠层材料一体化制孔过程中,CFRP制孔表面极易受到钛合金切屑排出的影响,出现入口撕裂、孔壁划伤等缺陷。为提高叠层材料制孔质量,通过低频振动钻削与传统钻削的对比试验,研究了刀具不同振幅(A=0μm、20μm、40μm、60μm)参数对切削力、切削温度及制孔质量等的影响。结果发现:钻削平均轴向力随着振幅增大而减小,而最大钻削轴向力增大。低频振动钻削较传统钻削加工温度有所下降。振动钻削对分层缺陷没有改善,且有增大缺陷的趋势,但对CFRP孔壁质量有明显改善。  相似文献   

5.
深孔加工在航空制造业中具有广泛需求,是加工难度最大的工序之一。复杂壳体零件是航空发动机的关键部件,其深孔加工质量直接影响航空发动机的服役性能和使用寿命。以航空复杂壳体零件为对象,针对航空复杂壳体零件深孔加工的工艺特点及难点,就目前现有深孔加工方法、深孔钻削力学、深孔钻削切屑形态与排屑方法、深孔加工在线监控及深孔加工设备等方面关键技术进行综述,并探讨了深孔加工未来的发展趋势。  相似文献   

6.
在研究了钛舍金材料切削性能的基础上,针对钛合金的特点,选用了五种国内常用的硬质舍金刀片材料,对钛合金进行深孔钻削刀具磨损试验。结果表明,确定了适合钻削钛合金TC11的硬质合金刀片材料。  相似文献   

7.
采用低频振动液体磨料研磨去毛刺工艺进行了去除微小孔钻削毛刺的试验。试验结果表明,该工艺方法能有效去除毛刺,具有工艺成本低,操作简便等优点,有较高的工程实用价值。  相似文献   

8.
张晓兵  孙瑞峰 《航空学报》2014,35(3):894-901
为了提高激光加工航空发动机气膜冷却孔质量,介绍了一种采用焦耳级脉冲能量毫秒激光在镍基高温合金上快速加工初始通孔,再采用毫焦耳级脉冲能量纳秒激光扩孔的二次加工小孔方法。通过该方法试图消除毫秒激光加工小孔产生的再铸层以及解决纳秒激光直接加工几乎无再铸层小孔效率低、深度有限的问题,从而实现更高效率加工高质量气膜冷却孔。试验研究结果表明,该方法可以有效去除毫秒激光加工小孔孔壁的再铸层,改善孔壁表面质量,与纳秒激光直接加工小孔比较,在加工1 mm左右深的小孔时可以提高加工效率,但加工2 mm以上深度的小孔时,对提高加工效率的作用不明显。基于试验结果及分析,对二次法加工小孔提出了改进措施。  相似文献   

9.
因CFRP、TC4材料的物理性能差异较大,导致CFRP/TC4叠层构件切削性能匹配性较差,钻削过程中存在界面损伤、CFRP孔壁损伤难以调控的问题。针对上述问题,本文采用变参数啄式钻削工艺、变参数钻削工艺和恒参数钻削工艺对CFRP/TC4叠层结构进行了制孔实验,并对不同工艺条件下的轴向力、界面质量、TC4的切屑形态、CFRP层孔壁质量进行了对比分析。结果表明:相对于其他两种钻削工艺,在变参数啄式钻削工艺条件下,TC4材料层轴向力明显较高,产生短带状和短螺旋状切屑;CFRP层出口和入口处的孔径更接近于名义孔径,孔壁缺陷较少,表面粗糙度相对较小。  相似文献   

10.
一般情况下,钻削孔深与孔径之比大于10的孔,被称为深孔钻削.由于长径比较大,采用一般的麻花钻来钻削时,排屑、冷却、润滑和导向就成了难以解决的问题,孔的质量要求也很难达到.  相似文献   

11.
陀螺电机转子动平衡采用的人工打孔去重存在效率低、去重精度低、金属碎屑残留等问题,严重制约了陀螺的生产效率和精度。而激光去重具有去重精度高、无接触、效率高等优点,在精密去重领域应用前景广泛。采用脉冲光纤激光器对陀螺电机转子动平衡进行了激光精密去重技术研究,探讨了激光频率、振镜扫描速度等参数对去重效果的影响规律,优化了激光去重工艺参数。当激光功率为30W、振镜扫描速度为1000mm/s时,去重盲孔效果最好。针对激光去重盲孔存在残留物问题,提出了激光二次抛光去除残留物的方法,研究了激光功率、振镜扫描速度对残留物去除效果影响规律,优化了激光抛光工艺参数。激光去重盲孔经二次扫描抛光后,盲孔表面残留物去除干净,满足陀螺电机转子的精密去重要求。  相似文献   

12.
树脂基纤维复合材料钻削研究进展   总被引:1,自引:1,他引:0  
主要介绍了树脂基纤维复合材料钻削过程中的钻削力、钻削温度、加工表面质量等钻削性能及材料去除机理、缺陷形成机理、刀具磨损机理等钻削机理方面的研究现状;阐述了树脂基纤维复合材料钻削工艺及钻头改进方面的最新研究进展,并对树脂基纤维复合材料钻削加工技术的下一步研究重点进行了展望。  相似文献   

13.
一、深孔加工的概念 在机械制造业中,孔的钻削是机械加工的一个类别,是常用的加工方法。但是大直径及小直径的深孔钻削是一个新的课题,在生产中有许多筒、杆类零件需要用深孔加工的方法进行加工。例如:飞机的作动筒、活塞杆等高强度钢。筒形件所需加工的深孔,其长度与直径之比,一般在L/D=7~10之间,有的>10以上至37倍左右,而且有一定的精度和光洁度要求,因而只有采用深孔加  相似文献   

14.
从激光陀螺抖动控制的基本原理入手,详细介绍了一种激光陀螺抖动闭环控制的新方法。该方法通过引入全球定位导航系统中信号跟踪解调的思想,使输出的抖动驱动控制信号的频率和相位与激光陀螺抖动反馈信号的频率和相位相等,从而来维持激光陀螺的闭环抖动。该种抖动控制方法既具有模拟正弦驱动信号噪声小、谐波小和能量损失小的优点,同时还具有方波驱动易于数字化实现和方便加入噪声的优点。最后通过仿真分析和试验,验证了提出的闭环抖动控制方法的可行性。  相似文献   

15.
采用自主磨制的阶梯钻对钛合金进行钻削实验,并与普通麻花钻进行对比。分析了不同加工参数下的钻削力、切屑形态、孔径、孔壁表面粗糙度以及孔出入口毛刺。实验结果表明:钻削力随着主轴转速的增大而减小,随着进给量的增大而增大。相比普通麻花钻,阶梯钻产生的钻削力更小,切屑尺寸更小,排出顺畅,孔径值接近于钻头直径,孔壁表面粗糙度值更小,孔出入口毛刺少。  相似文献   

16.
一、光纤陀螺——研制中的陀螺这是继激光陀螺问世后正在研制中的崭新陀螺。众所周知激光陀螺的体积小,重量轻,而它的体积更小,重量更轻,没有转动部件,引起了世界各国的工业和军事部门的注目。有关科研部门在此研制过程中都力争上游。据报导我国上海科技大学与安徽光机所联合研制的  相似文献   

17.
本文通过工艺转化,采用车铣复合加工中心与深孔钻取代电火花来实现小孔和深孔的加工,解决了电火花加工带来的表面质量和尺寸精度差等一系列问题。  相似文献   

18.
为研究CFRP不同纤维方向对其钻孔温度场分布和孔壁质量的影响,对不同纤维方向角处切削形式进行理论分析和ABAQUS仿真分析,并结合CFRP单向板、正交板和准各向同性板的钻削温度分布测试试验与钻削温度场仿真分析。结果表明,碳纤维方向对钻削温度场的分布规律影响很大;通过电子显微镜和共聚焦显微镜对不同纤维方向角处孔壁质量观测对比,发现纤维方向角在θ=0°、θ=45°和θ=90°处孔壁质量较好,在θ=135°处孔壁质量较差。  相似文献   

19.
当TITEX于2005年推出XD技术时,即预示着已再次挖掘了深孔钻削领域新的生产率潜能。拥有钻削深度达30倍径的专用刀具,与先前一直使用的技术相比较,在某些情况下这种刀具生产钻孔时生产率可提高6倍。钻削的孔越深代表着应用需求越为苛刻。保证精确的工艺安全  相似文献   

20.
通过数值模拟研究纳秒脉冲激光冲击制孔过程孔壁热应力,分析不同脉冲数作用下制孔过程孔壁热应力演变特征,揭示了不同厚度再铸层内应力变化特征.结果表明:随着纳秒脉冲数增加,制孔深度不断增加,孔壁最高温度和最大von Misses等效应力逐步远离激光入孔端,但最大等效塑性应变在激光入孔端;随着再铸层厚度的增加,其内部拉应力不断增大,微裂纹易产生于较厚的孔壁再铸层内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号