首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Moroz  V. I.  Huntress  W. T.  Shevalev  I. L. 《Cosmic Research》2002,40(5):419-445
Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.  相似文献   

2.
As a result of increasing public and political interest in ‘space’ (i.e. solar system) exploration at the global scale, the Space Advisory Group of the European Commission has evaluated the situation in Europe with regard to its potential to participate in this ambitious global enterprise. Aspects of science, technology, environment and safety, society, spin-offs and international cooperation were all considered. The group concluded that Europe possesses sufficient key technologies and scientific expertise to play a major role in international space exploration and has recommended that the EU take a central role to ensure the success of future European space exploration, not only to give a clear political signal for the way forward but also to ensure an appropriate financial framework. In this way Europe would embrace the spirit of the European Space Policy and contribute to the knowledge-based society by investing significantly in space-based science and technology, thereby playing a strong role in international space exploration.  相似文献   

3.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

4.
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme.  相似文献   

5.
Europe is faced with several essential policy decisions with regard to the exploitation of space technology. Important issues are: the relations between civilian and military uses of outer space, employment opportunities, industrial and commercial interests, European security and international stability, regional and international cooperation. Concerted action is required for political reasons and in order to achieve the necessary scientific, technological and economic critical masses. Another major policy issue is, therefore, whether Europe should expand its space venture in the framework of a European military space community as proposed by France, through national or bilateral programmes, by participating in the US SDI research, or through NATO, the Independent European Programme Group, the Western European Union, or the European Space Agency.  相似文献   

6.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

7.
Manned spaceflight has been an important element of the German space program over the last decades. This is demonstrated by the nationally managed space missions Spacelab D-l (1985), D-2 (1993), and MIR '92 as well as by the participation in the 1st Spacelab mission FSLP (1983), the NASA missions IML-1 (1992) and IML-2 (1994), as well as in the ESA missions EUROMIR '94 and '95. On February 12th, this year, the German cosmonaut Reinhold Ewald was launched together with his Russian colleagues Wasilij Zibliew and Alexander Lasudkin onboard of a Soyuz spacecraft for another stay of a German cosmonaut onboard of the Russian Space Station MIR. This mission--the so-called German/Russian MIR '97--was, of course, another cornerstone with regard to the cooperation between Russian and German space organizations. The cooperation in the area of manned missions began 1978 with the flight of the German cosmonaut Sigmund Jahn onboard of Salyut 6, at that time a cooperation between the Soviet Union and the German Democratic Republic in the frame of the Interkosmos Program. In March 1992, it was followed by the flight of Klaus Dietrich Flade with his stay onboard of MIR. After two further successful ESA missions, EUROMIR '94 and '95 with the two German cosmonauts Ulf Merbold and Thomas Reiter and with a marked contribution of German scientists, the decision was taken to perform another German/Russian MIR mission, the so-called MIR '97. In Germany, MIR'97 was managed and performed in a joint effort between several partners. DARA, the German Space Agency, was responsible for the overall program and project management, while DLR, the German Aerospace Research Establishment, was responsible for the cosmonaut training, for medical operations, for the mission control at GSOC in Oberpfaffenhofen as well as for user support.  相似文献   

8.
In 1981 the US spacecraft planned for the international Solar Polar Mission, in cooperation with the European Space Agency, was abruptly withdrawn. This article discusses the events leading up to the withdrawal and how it was handled by NASA and US government officials, and ESA's reaction. Reflections are offered on the experience, and ESA's current attitude towards space partnerships with the USA is examined. The author concludes the Europe is in a stronger bargaining position today, and has also advanced towards having its own autonomous space capability.  相似文献   

9.
A common European defence policy is still at a very preliminary stage, and although some limited progress has recently been made, it is a politically sensitive issue. In contrast to scientific research or large industrial ventures such as aircraft development, where Europe has moved forward rather well, obstacles to further integration in defence and security matters are numerous. Space systems could be used to facilitate such integration as their duplication is costly and so much remains to be done in Europe in this field. A common European ‘vision’ for the role of space systems in security and defence thus needs to be developed. This article reviews the role of space in security and defence missions, the technology and industrial base Europe needs, and its capability and autonomy in achieving access to space. Space system vulnerability and the means of minimizing it are addressed, including measures to prevent the weaponization of space. The possible role of ESA in support of the European Defence Agency for defence space systems development is identified, along with the need for ad hoc organizations for operational exploitation. Ten recommendations are made that would permit progress at the European level, following the path already successfully achieved in the civilian domain.  相似文献   

10.
《Space Policy》2014,30(3):163-169
The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.  相似文献   

11.
Jacques Blamont   《Space Policy》2005,21(2):89-92
France and the USA have in the past enjoyed a close and fruitful cooperative relationship in space but there is now a growing divergence between apparent US priorities for future activity and those of other countries, for whom human spaceflight is not so important. While accepting that it cannot match the USA technologically, Europe is increasingly sceptical of the wisdom of pursuing space cooperation with its given difficulties caused by the ITAR regime, greater suspicion of anything foreign in the USA and the unwillingness of NASA ever to cede a critical path to a partner. Nor are any of the non-space ventures currently being suggested as cooperation models attractive from a European point of view. A better way forward would be to have conglomerates of nations cooperating on an equal footing and avoiding recourse to US State Department-regulated technology.  相似文献   

12.
Scott Pace 《Space Policy》2011,27(3):127-130
China has engaged in a steady, long-standing effort to build and strengthen its space capabilities, achieving progressively more ambitious milestones and staking its claim as a major space power. It is also increasingly engaging in cooperative efforts. A number of issues must be weighed, however, before the USA should consider any collaboration with it. These include the essentially military nature of China’s space program, the fact that China’s intentions in space and decision-making process are far from ‘transparent’, and the way it uses its space activities to pursue foreign policy goals. While the latter could be useful in, e.g., reducing tensions on the Korean peninsular through a space-services-for-giving-up-missiles tradeoff, and while there is scope for collaboration in space science missions, there are no compelling reasons for the USA to pursue cooperation in human spaceflight with China.  相似文献   

13.
Hermes vehicle     
The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station.The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States.The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment.Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions.Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.  相似文献   

14.
It is becoming increasingly clear that space activities can benefit from international cooperation, but concerns about national interests remain. This article examines the experience of the Inter-Agency Consultative Group (IACG), which achieved striking success in coordinating the efforts of the USA, the USSR, the European Space Agency and Japan to study Halley's Comet. Subsequently the IACG has undertaken a new project, focused on solar-terrestrial science, and further expansion could follow. However, tje group's success has depended on scrupulous respect for members' national autonomy, and so it is unlikely to herald the formation of a supranational space agency in the near future.  相似文献   

15.
Instead of preparing for space warfare, the USA could make tremendous use of space activities to enhance global security. Arms control verification, environmental monitoring and international cooperation on space missions are important examples. International space year, 1992, could be the time to launch a triumphant effort such as an international mission to Mars.  相似文献   

16.
Space exploration into the twenty-first century is contingent upon the ability of states to forge an appropriate vehicle for international cooperation. A theoretical framework that explains international cooperation in space exploration is proposed. This framework encompasses scientific, technological, political, and economic initial conditions, state and nonstate political actors, and models of cooperation that explain how initial conditions and actors interact to realize cooperative outcomes. It is hypothesized that the prevailing initial conditions favor certain political actors over others which, in turn, promote a specific model of cooperation. Cooperative policy outcomes are examined and assessed vis-à-vis case studies of cooperation in space exploration. On this basis, policy recommendations that engender effective cooperative outcomes in space exploration are suggested.  相似文献   

17.
18.
Manzey D 《Acta Astronautica》2004,55(3-9):781-790
Human exploratory missions to Mars represent the most exciting future vision of human space flight. With respect to the distance to travel and mission duration, these missions will provide unique psychological challenges that do not compare to any other endeavor humans ever have attempted. The present paper presents outcomes of two recent projects sponsored by the European Space Agency--Humex and Reglisse--where these challenges and risks have been analyzed in some detail, and where concepts for future research have been developed. This presentation involves three steps. At first, it will be shown that our current psychological knowledge derived from orbital spaceflight and analogue environments is not sufficient to assess the specific risks of mission into outer space. Secondly, new psychological challenges of missions to Mars will be identified with respect to three different areas: (1) individual adaptation and performance, (2) crew interactions, and (3) concept and methods of psychological countermeasures. Finally, different options and issues of preparatory psychological research will be discussed.  相似文献   

19.
Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from “cocktail napkin” to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, project-formulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest-leverage modeling and analysis needs.  相似文献   

20.
Poland has a long-standing tradition in space activities. Polish institutions have participated as co-investigators in almost all European Space Agency (ESA) science projects, as well as on many other missions. However, the first Polish satellite (PW-SAT) was only launched in 2012. Poland was one of the first Eastern European countries to conclude a Cooperation Agreement with ESA in the peaceful use of outer space; it was signed in 1994 and followed by a second in January 2002. Negotiations on Polish membership in the ESA were started in autumn of 2011, and ended in April 2012. Following ratification of the agreement, Poland officially became the 20th Member State of ESA on 19 November 2012. This article examines how Poland is setting its way as a space nation. It describes recent developments in the Polish space programme, including the road to Poland's full membership in the European Space Agency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号