首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

2.
Many radar systems use the monopulse ratio to extract angle of arrival (AOA) measurements in both azimuth and elevation angles. The accuracies of each such measurement are reasonably well known: each measurement is, conditioned on the sum-signal return, Gaussian-distributed with calculable bias (relative to the true AOA), and variance. However, we note that the two monopulse ratios are functions of basic radar measurements that are not entirely independent, specifically in that the sum signal is common to both. The effect of this is that the monopulse ratios are dependent, and a simple explicit expression is given for their correlation; this is of considerable interest when the measurements are supplied to a tracking algorithm that requires a measurement covariance matrix. The system performance improvement when this is taken into account is quantified: while it makes little difference for a tracking radar with small pointing errors, there are more substantial gains when a target is allowed to stray within the beam, as with a rotating (track-while-scan) radar or when a single radar dwell interrogates two or more targets at different ranges. But in any case, the correct covariance expression is so simple that there is little reason not to use it. We additionally derive the Cramer-Rao lower bound (CRLB) on joint azimuth/elevation angle estimation and discover that it differs only slightly from the covariance matrix corresponding to the individual monopulse ratios. Hence, using the individual monopulse ratios and their simple joint accuracy expression is an adequate and quick approximation of the optimal maximum likelihood procedure for single resolved targets.  相似文献   

3.
Detection of Target Multiplicity Using Monopulse Quadrature Angle   总被引:1,自引:0,他引:1  
The feasibility of using the indicated quadrature angle of arrival of a monopulse radar to discriminate a single target from multiple targets, separated in angle within a radar resolution cell, is investigated. The analysis is performed for steady (fixed) and Rayleigh fluctuating targets which cover a broad range of target characteristics. In both cases, the interfering signals due to noise and clutter in the sum and difference monopulse channels are assumed to be independent, zero-mean Gaussian processes. Detection and false alarm probabilities are evaluated analytically and the receiver operating characteristics are obtained for both fixed and fluctuating target cases. It is shown that multiple targets can be discriminated from a single target condition by integrating the indicated monopulse quadrature angle of arrival from several independent pulses. It is also shown that the probability of detecting multiple targets increases as the fluctuation in the target radar cross section decreases, approaching the fixed amplitude case in the limit.  相似文献   

4.
Monopulse DOA estimation of two unresolved Rayleigh targets   总被引:3,自引:0,他引:3  
This paper provides for new approaches to the processing of unresolved measurements as two direction-of-arrival (DOA) measurements for tracking closely spaced targets rather than the conventional single DOA measurement of the centroid. The measurements of the two-closely spaced targets are merged when the target echoes are not resolved in angle, range, or radial velocity (i.e., Doppler processing). The conditional Cramer Rao lower bound (CRLB) is developed for the DOA estimation of two unresolved Rayleigh targets using a standard monopulse radar. Then the modified CRLB is used to give insight into the boresight pointing for monopulse DOA estimation of two unresolved targets. Monopulse processing is considered for DOA estimation of two unresolved Rayleigh targets with known or estimated relative radar cross section (RCS). The performance of the DOA estimator is studied via Monte Carlo simulations and compared with the modified CRLB  相似文献   

5.
In modern secondary surveillance radar (SSR) the monopulse technique is currently introduced for the measurement of the azimuth of the targets. The monopulse technique is based on a suitable processing of signals received by a multiple antenna. In SSR the signals are generated by a transponder on the aircraft as replies to interrogations from ground equipment, and consist of trains of pulses. The monopulse measurements can be carried out on the basis of a single pulse from each train, so that it provides a great number of azimuth estimates. Many monopulse measurement devices exist, corresponding to different processing techniques. From the point of view of accuracy and precision, their behaviors differ with respect to the sources of errors, both internal (noise and imperfect calibrations) and external (interference and propagation effects). The four main types of monopulse receivers are analyzed here with respect to the effects of the internal error sources on the resulting measurement accuracy. After an introductory discussion of the performances of the receivers, a detailed analysis is carried out on the basis of a general mathematical model. The results are given in an analytical form and in some comprehensive diagrams.  相似文献   

6.
Radar signal processing is particularly important in tracking closely spaced targets and targets in the presence of sea-surface-induced multipath. Closely spaced targets can produce unresolved measurements when they occupy the same range cell of the radar. These issues are the salient features of the benchmark problem for tracking unresolved targets combined with radar management, for which this paper presents the only complete solution to date. In this paper a modified version of a recently developed maximum likelihood (ML) angle estimator, which can produce two measurements from a single (unresolved) detection, is presented. A modified generalized likelihood ratio test (GLRT) is also described to detect the presence of two unresolved targets. Sea-surface-induced multipath can produce a severe bias in the elevation angle measurement when the conventional monopulse ratio angle extractor method is used. A modified version of a recently developed ML angle extractor, which produces nearly unbiased elevation angle measurements and significantly improves the track accuracy, is presented. Efficient radar resource allocation algorithms for two closely spaced targets and targets flying close to the sea surface are also presented. Finally, the IMMPDAF (interacting multiple model estimator with probabilistic data association filter modules) is used to track these targets. It is found that a two-model IMMPDAF performs better than the three-model version used in the previous benchmark. Also, the IMMPDAF with a coordinated turn model works better than the one using a Wiener process acceleration model. The signal processing and tracking algorithms presented here, operating in a feedback manner, form a comprehensive solution to the most realistic tracking and radar management problem to date.  相似文献   

7.
对2种检测单脉冲雷达主波束内是否存在2个不可区分目标的算法进行了推广,将其应用到波束内可能存在N个不可区分的目标,并仿真了波束内存在3个目标时的检测性能。仿真表明,在总信噪比相同时,3个目标的检测概率不一定大于2个目标的检测概率,处于方位向上间距最大的2个目标的信噪比对整个检测概率影响较大。  相似文献   

8.
High range-resolution monopulse (HRRM) tracking radar which maintains wide instantaneous bandwidth through both range and angle error sensing channels provides range, azimuth, elevation, and amplitude for each resolved part of the target. The three-dimensional target detail can be used to improve and extend radar performance in several ways: for improved precision of target location, for target classification and recognition, to counter repeater-type ECM, to improve low-angle multipath tracking, to resolve multiple targets, as a miss-distance measurement capability, and for improved tracking in chaff and clutter. These have been demonstrated qualitatively except for the ECCM to repeater ECM and low-altitude tracking improvement. Initial results from an experimental HRRM radar with 3-ns pulse length show resolution of aircraft into its major parts and precise location of each resolved part accurately in range and angle. Realtime closed-loop tracking is performed on aircraft in flight using high-speed sampled, digitized, and processed HRRM range and angle video data. Clutter rejection capability is also demonstrated.  相似文献   

9.
Angle estimation for two unresolved targets with monopulse radar   总被引:2,自引:0,他引:2  
Most present-day radar systems use monopulse techniques to extract angular measurements of sunbeam accuracy. The familiar "monopulse ratio" is a very effective means to derive the angle of a single target within a radar beam. For the simultaneous estimation of the angles of two closely-spaced targets, a modification on the monopulse ratio was derived in (Blair and Pearce, 2001), while (Sinha et al., 2002) presented a maximum likelihood (ML) technique via numerical search. In this paper it is shown that the ML solution can in fact be found explicitly, and the numerical search of ((Sinha et al., 2002) is unnecessary. However, the ML solution requires the signal to noise ratio (SNR) for each target to be known, and hence we generalize it so it requires only the relative SNR. Several versions of expectation maximization (EM) joint angle estimators are also derived, these differing in the degree to which prior information on SNR and on beam pattern are assumed. The performances of the different direction-of-arrival (DOA) estimators for unresolved targets are studied via Monte Carlo, and it is found that most have similar performance: this is remarkable since the use of prior information (SNR, relative SNR, beam pattern) varies widely between them. There is, however, considerable performance variability as a function of the two targets' off-boresight angles. A simple combined technique that fuses the results from different approaches is thus proposed, and it performs well uniformly.  相似文献   

10.
Random-noise radar has been applied successfully to range measurement, velocity estimation and terrain/target imaging. For applications involving stationary targets, long integration times and process averaging are easily tolerated. In situations where the target or radar platform moves at high speed, the impact of this relative motion on system design should be considered. This work addresses the statistical performance of a generic random-noise radar receiver and examines the inter-relationships between design parameters and performance tradeoffs. Complementing this examination, a random-noise monopulse system is also investigated as a possible architecture for real-time angle estimation. Simulations and numerical illustrations provide the basis of processor design and performance prediction.  相似文献   

11.
In the presence of sea-surface multipath monopulse radar signals from a low elevation target have three alternative paths in addition to the direct (radar-to-target) path due to reflections from the sea surface. The specular reflection causes significant signal fading. The diffuse reflection causes an approximately constant bias to the in-phase component of the monopulse ratio, which is the standard extractor of the direction of arrival (DOA) in the monopulse processing. The diffuse reflection also causes higher standard deviation to the in-phase component of the monopulse ratio. We propose a maximum likelihood (ML) angle extraction technique for low elevation targets of known average signal strength having a Rayleigh fluctuation. The results show that this method reduces the error of the estimated angle compared with the conventional monopulse ratio estimator. Subsequently, the ML angle extractor is modified for the unknown average signal strength case. This modified angle extractor has only a small performance degradation compared with the known average signal strength case, but it performs much better than the monopulse ratio based estimator. An algorithm to calculate the accuracy of the estimated angle (or height) is also presented. This angle extractor reduces the root-mean-square error (RMSE) by more than 50% in the signal processing stage when used in a low flying target tracking scenario. The same algorithm can be used to track sea skimmers.  相似文献   

12.
Unresolved Rayleigh target detection using monopulse measurements   总被引:3,自引:0,他引:3  
When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm  相似文献   

13.
Analysis of a typical amplitude-comparison monopulse angle-tracking radar shows that gain variation and bias in the radar error signal can occur under certain conditions involving multiple targets. The general behavior depends on the Doppler separation of the targets relative to system bandwidths; for a specific situation, the gain variation and bias are functions of the relative strengths of the targs. The analysis is shown to be consistent with experimental observations.  相似文献   

14.
The potential of airborne radar to provide pictorial displays as an aid to low approach has stimulated invention of several aircraft approach systems. Early developments are reviewed briefly, and an experiment in producing and flight testing a two-dimensional, range and azimuth, pictorial radar display is described. The monopulse radar equipment and a monopulse display improvement (MDI) technique used in the flight test to enhance the B-scope display are also described in some detail. Representative radar scope photographs are used to illustrate the display available in the aircraft.  相似文献   

15.
The problem of tracking targets in the presence of reflections from sea or ground is addressed. Both types of reflections (specular and diffuse) are considered. Specular reflection causes large peak errors followed by an approximately constant bias in the monopulse ratio, while diffuse reflection has random variations which on the average generate a bias in the monopulse ratio. Expressions for the average error (bias) in the monopulse ratio due to specular and diffuse reflections and the corresponding variance in the presence of noise in the radar channels are derived. A maximum maneuver-based filter and a multiple model estimator are used for tracking. Simulation results for five scenarios, typical of sea skimmers, with Swerling III fluctuating radar cross sections (RCSs) indicate the significance and efficiency of the technique developed in this paper-a 65% reduction of the rms error in the target height estimate.  相似文献   

16.
The use of a two-lobe monopulse radar for measuring slant range to the surface of the earth in the absence of discrete targets is analyzed. It is shown that tracking dispersion can be considered as the resultant of two components. One component is independent of range and results from the finite pulse length and gate length and the random nature of the return signals. The other component is due to receiver noise and increases as the signal-to-noise ratio decreases. The dispersion component independent of range is shown to be proportional to the pulse length and tracking gate length. The variable dispersion is shown to be proportional to the five halves power of the range and the three halves power of the cotangent of the depression angle of the antenna boresight axis. Performance calculations for a specific radar are carried out and compared with experimental data.  相似文献   

17.
周亮  孟进  吴灏  刘永才  刘伟 《航空学报》2019,40(8):322755-322755
交叉眼干扰被认为是对单脉冲雷达干扰最有效的方式之一。基于雷达方程建立了隔离平台回波下的两点源反向交叉眼干扰模型,推导了交叉眼干扰欺骗角一般性公式,研究了干扰机发射天线间距、干扰平台旋转角和干扰机相对雷达之间距离等参数变化对角度欺骗效果的影响,并依据单脉冲雷达接收机获取角度的信息处理流程,建立了单脉冲雷达接收机仿真模型,对交叉眼数学模型的正确性和局限性进行了分析。研究结果表明:单脉冲雷达越靠近两点源交叉眼干扰机中心线、干扰机两发射天线间距越大、与干扰机距离越近时,角度欺骗效果越好;单脉冲雷达的欺骗角度随着与干扰机距离的接近呈指数式增大;数学模型和仿真模型计算的单脉冲雷达角度误差最大值随干扰机天线与雷达天线中心连线的夹角的增大呈指数化增长。研究可为交叉眼干扰工程设计作参考。  相似文献   

18.
A theoretical model of diffuse multipath reflections from rough surfaces is applied to the prediction of multipath power distribu tions in radar coordinates: elevation angle, time delay, and Dop pler frequency. These distributions are used to predict radar tracking errors in elevation angle, for both monopulse and scan ning antenna systems, and typical results are presented. These show a small increase in tracking error for scanning systems, on radially approaching targets, caused by sensitivity of these trackers to amplitude scintillation of the composite direct-plus multipath signal. Effects of knife-edge diffraction and of vegetation ion are briefly considered.  相似文献   

19.
Detection of small objects in clutter using a GA-RBF neural network   总被引:5,自引:0,他引:5  
Detection of small objects in a radar or satellite image is an important problem with many applications. Due to a recent discovery that sea clutter, the electromagnetic wave backscatter from a sea surface, is chaotic rather than purely random, computational intelligence techniques such as neural networks have been applied to reconstruct the chaotic dynamic of sea clutter. The reconstructed sea clutter dynamical system which usually takes the form of a nonlinear predictor does not only provide a model of the sea scattering phenomenon, but it can also be used to detect the existence of small targets such as fishing boats and small fragments of icebergs by observing abrupt changes in the prediction error. We applied a genetic algorithm (GA) to obtain an optimal reconstruction of sea clutter dynamic based on a radial basis function (RBF) neural network. This GA-RBF uses a hybrid approach that employes a GA to search for the optimum values of the following RBF parameters: centers, variance, and number of hidden nodes, and uses the least square method to determine the weights. It is shown here that if the functional form of an unknown nonlinear dynamical system can be represented exactly using an RBF net (i.e., no approximation error), this GA-RBF approach can reconstruct the exact dynamic from its time series measurements. In addition to the improved accuracy in modeling sea clutter dynamic, the GA-RBF is also shown to enhance the detectability of small objects embedded in the sea. Using real-life radar data that are collected in the east coast of Canada by two different radar systems: a ground-based radar and a satellite equipped with synthetic aperture radar (SAR), we show that the GA-RBF network is a reliable detector for small surface targets in various sea conditions and is practical for real-life search and rescue, navigation, and surveillance applications  相似文献   

20.
随着现代信号处理技术的发展,对非平稳信号分析和处理的小波分析技术已成功应用于雷达目标特性分析领域,大功率单脉冲雷达作为我国航天测控网的主干设备,具有一定的目标特性识别能力。本文主要针对脉冲雷达RCS测量原理,讨论了基于小波变换的单脉冲雷达空间目标RCS测量方法,提出应发挥窄带低分辨率雷达在未来空间目标识别中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号