首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

2.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

3.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

4.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

5.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

6.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

7.
This review focuses on the conditions for -ray line production in the most interesting astronomical objects, in light of the planned experiments: Gamma-1, GRO, Sigma, GRASP, and others. Among these objects are the Sun, the galactic center region, molecular and dust clouds, accreting and exploding stars.  相似文献   

8.
The advent of far infrared arrays will change fundamentally the means of analyzing observations in this spectral region. Sources much fainter than traditional confusion limits will be extracted from images by using computer algorithms similar to CLEAN or DAOPHOT. We have conducted numerical experiments to evaluate these techniques and show that they will permit long integrations (10,000 sec at 60 m, 200 sec at 100 m) to achieve nearly photon-background-limited performance and hence very deep detection limits. The dominant noise sources—photon noise, confusion by distant galaxies, and confusion by IR cirrus — scale with nearly the same power of the telescope aperture. As a result, the integration times required to reach confusion limits are nearly aperture-independent.  相似文献   

9.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

10.
Following our previously proposed technique, we have used the recent -ray observations of Mkr421 to place theoretically significant constraints on the magnitude of the intergalactic infrared radiation field (IIRF). Our 2 upper limits are consistent with normal IR production by stars and dust in galaxies. They rule out exotic mechanisms proposed to produce a larger IIRF. Although they are still subject to revision and are unconfirmed, the data on the spectrum of Mkr421 hint at a possible absorption cutoff which could be produced by an IIRF of the magnitude expected from stellar emission and reprocessing in galaxies. Using models for the low energy intergalactic photon spectrum from microwave to ultraviolet energies, we calculate the opacity of intergalactic space to -rays as a function of energy and redshift. These calculations indicate that the GeV -ray burst recently observed by the CGRO EGRET detector originates at a redshift less than 1.5.  相似文献   

11.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

12.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

13.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

14.
We report here on preliminary results of a systematic study of fast temporal fluctuations in impulsive and extended solar X-ray bursts observed by PHEBUS at energies around 100 keV. Subsecond timescales are quite common in the impulsive events and are not observed in extended ones.  相似文献   

15.
This article presents some of the new and important particle features that have been detected in the energy range 1 keV to 290 keV by the ISEE-1 and -2 spacecraft near the magnetopause, bow shock, and the interplanetary space. Only examples of data from the first few orbits, when the spacecraft were on the front side, are shown.Paper presented at 13th ESLAB Symposium, Innsbruck, Austria (June 5, 1978).  相似文献   

16.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing Cephei stars, and the other, Cephei suspects. These lists then serve as a basis for discussing such topics as the location of Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.Belgian Fund for Scientific Research (NFWO).  相似文献   

17.
We compare CLOUDY predictions for the equilibrium ionization in the interstellar cloud surrounding the solar system with pick-up ion data. The incident radiation field includes contributions from hot stars, the emission from the conductive cloud boundary and the diffuse FUV back-ground. To within the observational uncertainties, CLOUDY predictions for the ratios n(He)/n(O), n(N)/n(O), n(Ne)/n(O), and n(He)/n(Ne) are consistent with pick-up ion data, provided that O and N are filtered by 50% in the heliopause region and the outer heliosphere as predicted by others. Thus, the steady-state ionization model and assumed radiation field appear approximately valid. However, the youth and low intervening column density towards the Vela pulsar leave open the possibility that the parent supernova explosion 10,500 years ago, and 200 pc distant, may also have affected LISM ionization, although the mechanism is uncertain. Support for this last possibility is provided by the apparent signature of the Vela explosion in the terrestrial geological record.Abbreviations ISM Interstellar Medium - FUV Far Ultraviolet - EUV Extreme Ultraviolet - SNR SN remnant - SXRB SXR Background - LISM Local Interstellar Matter  相似文献   

18.
Conclusions X-ray variability is seen in all types of AGN but large amplitude ( factor 2) outbursts on short timescales (days) occur rarely, perhaps once every 100 days. There is no strong dependence of variability on luminosity, but radio-powerful AGN, particularly BL Lacs and 0VV QS0s, do vary most. Sensitive detectors, such as the EXOSAT ME, have been able to detect variability of smaller amplitude (20%) and on shorter timescales (1 hour) than previous experiments, but this too is not common. There is very little evidence of spectral variability during changes in intensity and so it is very likely that such changes are total power variations and not artefacts of variable obscuration. The variability timescales imply that most Seyfert galaxies are emitting well below the Eddington limit. On efficiency considerations only two observations of X-ray variability, those of the QS01525+227 and the BL Lac H0322+022, require exotic black hole models, relativistic beaming, or a change in the assumed value of H0. The most dramatic observation of variability so far reported, that of repeated variations on a timescale of 4000 seconds in NGC4051 is probably related to a hydrodynamical timescale in the accretion disc and encourages us to believe that, with future observations, our understanding of AGN may approach that of galactic X-ray sources.Many Seyferts do have a canonical =0.7 spectral index, but it is becoming increasingly clear that a wide variety of spectral indices exist, both in Seyfert galaxies and in other classes of AGN. Both thermal and non-thermal emission mechanisms are tenable explanations for most of these spectra as, in general, the very high energy observations which could distinguish between the two are not available.Timing observations rarely require relativistic beaming, however, the (low) observed X-ray fluxes of BL Lacs and 0VV QS0s generally do. reacceleration of particles on short timescales is necessary to explain the continuous infrared to X-ray spectra of BL Lacs.The status of soft excesses in the low energy spectra of Seyfert galaxies which have canonical medium energy spectra is not clear. A separate soft component has been detected in EXOSAT observations of NGC4151 but this need not be associated with the nuclear continuum source. No SSS or EXOSAT observations definitely require such excesses. EXOSAT is, in principle, very sensitive to soft excesses but the uncertainty in the Boron filter calibration and in the value of the galactic absorption at present limit precise determinations.The absorbing column in the direction of many AGN is, in many cases, entirely accountable for purely by absorption in our own galaxy. In cases where a substantial absorbing column is detected, variations in the column are occasionally seen but it is not yet clear whether these variations are due to bulk movements of obscuring material or increased photoionisation (warm absorbers). All observations of iron lines are consistent with fluorescence in a cold gas which probably surrounds the X-ray emitting region in a sphere or shell-type geometry, though (by Gauss' law) this need not necessarily lie immediately next to the central black hole.Detailed observations of the time-variability of the complete X-ray to radio spectrum offer the best hope of further progress in this complex but interesting field.  相似文献   

19.
Gerhard  Ortwin 《Space Science Reviews》2002,100(1-4):129-138
This article summarizes recent work on the luminosity and mass distribution of the galactic bulge and disk, and on the mass of the Milky Way's dark halo. A new luminosity model consistent with the COBE NIR data and the apparent magnitude distributions of bulge clump giant stars has bulge/bar length of 3.5 kpc, axis ratios of 1:(0.3–0.4):0.3, and short disk scale-length (2.1 kpc). Gas-dynamical flows in the potential of this model with constant M/L fit the terminal velocities in 10° le|l|le50° very well. The luminous mass distribution with this M/L is consistent with the surface density of known matter near the Sun, but still underpredicts the microlensing optical depth towards the bulge. Together, these facts argue strongly for a massive, near-maximal disk in our L *, Sbc spiral galaxy. While the outer rotation curve and global mass distribution are not as readily measured as in similar spiral galaxies, the dark halo mass estimated from satellite velocities is consistent with a flat rotation curve continuing on from the luminous mass distribution.  相似文献   

20.
We review aspects of anomalous cosmic rays (ACRs) that bear on the solar modulation of energetic particles in the heliosphere. We show that the latitudinal and radial gradients of these particles exhibit a 22-year periodicity in concert with the reversal of the Sun's magnetic field. The power-law index of the low energy portion of the energy spectrum of ACRs at the shock in 1996 appears to be -1.3, suggesting that the strength of the solar wind termination shock at the helioequatorial plane is relatively weak, with s 2.8. The rigidity dependence of the perpendicular interplanetary mean free path in the outer heliosphere for particles with rigidities between 0.2 and 0.7 GV varies approximately as R2, where R is particle rigidity. There is evidence that ACR oxygen is primarily multiply charged above 20 MeV/nuc and primarily singly-charged below 16 MeV/nuc. The location of the termination shock was at 65 AU in 1987 and 85 AU in 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号