首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using data from the Solar Isotope Spectrometer on the Advanced Composition Explorer obtained during 36large solar energetic particle events (SEPs) that occurred during 1997–2002 we have examined the spectral characteristics of oxygen and iron. Based on the shape of the oxygen spectrum during the decay phase following the peak in particle intensity, each SEP event was categorized as either exponential (7 events) or power law (29 events). We find that the exponential events were typically the larger events (in terms of peak oxygen intensity) and had Fe/0 ratios that strongly decreased with increasing energy.Event-averaged Fe/0 ratios (integrated over 12 to 60 MeV/nucleon) were at or below coronal abundances for nearly all these events, while the ratios obtained in the power law events were typically enhanced over coronal values. The majority of the power law events had the same spectral index for both 0 and Fe resulting in an Fe/0 ratio independent of energy. However 6 of the 29 power law events had Fe/0 ratios that increased with increasing energy due to an Fe spectral index less negative than that of 0. We consider simple diffusion theory in an effort to understand the nature of these events and obtain preliminary but promising results.  相似文献   

2.
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections.  相似文献   

3.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   

4.
Between 1975 and 1983 HELIOS 1 scanned the interplanetary medium between 0.3 and 1 AU 31 times. The observed variations in the differential and integral flux of protons and helium nuclei in the energy range from 4 to >50 MeV/n are characterized by large temporal changes in the intensities, moderate changes in the energy spectrum and changes in the gradient below the detection level (60%). During solar minimum conditions recurrent disturbances are caused mainly by corotating interaction regions. The onset of solar activity near the end of 1977, characterized by a large number of solar events, is accompanied by a monotonous decrease of galactic cosmic radiation. The successive reduction of the cosmic ray intensity to the level of solar maximum is discussed in view of the role of large transient disturbances as compared to processes as diffusion, convection, adiabatic energy losses and drifts.  相似文献   

5.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

6.
The author's finding that active regions are sources of relatively slow and approximately radial quasistationary corpuscular streams is confirmed by using the fact that active regions are closely connected with coronal holes. Furthermore, attention is paid to numerous papers according to which the active regions characterized by enhanced and prolonged chromospheric (flare) activity are also sources of quasistationary corpuscular streams. Velocities of gases in these streams are higher than velocities of gases in streams from “quiet” active regions.On the basis of all these studies it is suggested that the origin of outflow of plasma from “quiet” active regions and from active regions with enhanced flare activity is the same and is due to some continuous non-stationary processes in the active regions. The velocity of gases in all these streams grows with increasing continuous flare activity in the active regions.It is concluded that quasistationary corpuscular streams from active regions with enhanced flare activity are important sources of cosmic rays from the sun.  相似文献   

7.
An X2/2B level solar flare occurred on 12 August, 1989, during the last day of the flight of the Space Shuttle Columbia (STS-28). Detectors on the GOES 7 satellite observed increased X-ray fluxes at approximately 1400 GMT and a solar particle event (SPE) at approximately 1600 GMT. Measurements with the bismuth germanate (BGO) detector of the Shuttle Activation Monitor (SAM) experiment on STS-28 showed factors of two to three increases in count rates at high latitudes comparable to those seen during South Atlantic Anomaly (SAA) passages beginning at about 1100 GMT. That increased activity was observed at both north and south high latitudes in the 57 degrees, 300 kilometer orbit and continued until the detector was turned off at 1800 GMT. Measurements made earlier in the flight over the same geographic coordinates did not produce the same levels of activity. This increase in activity may not be entirely accounted for by observed geomagnetic phenomena which were not related to the solar flare.  相似文献   

8.
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.  相似文献   

9.
Goals of the recently repaired Solar Maximum Mission Observatory are outlined, including continued emphasis on diagnosing impulsive phase of flares, studies of prominence and coronal plasmas, solar cycle variations of flares, the corona and solar irradiance, and comets. Some preliminary observations taken after the repair are shown, particularly of the X13 flare of April 1984.  相似文献   

10.
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as E-3. This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares.  相似文献   

11.
Neutrons with energies exceeding 1 GeV are emitted in the course of solar flares. Suitable dedicated neutron spectrometers with directional characteristics are necessary for a systematic spectroscopy of solar neutrons. We report here a study of instruments based on the detection of proton recoils from hydrogenous media, with double scattering in order to provide directional information, and also a novel scheme based on the detection of radiation from the neutron magnetic dipole moment, permitting also directional detection of neutrons. Specific designs and detection systems are discussed.  相似文献   

12.
Because of global warming, global sea levels have risen, the frequency of drought in Taiwan is much more frequent in winter and spring, and rainfall tends to concentrate in summer. The probability of disaster-type weather has also increased significantly. Estimating precipitable water vapor (PWV) through GPS signals, related studies and analyses of weather conditions, and the effective use of meteorological forecasts have been valued by many meteorological research organizations and officials. In this study, PWV data from 2006 to 2017 and rainfall data were used for long-term harmonic analysis. PWV data calculated by ECMWF (ECMWF-PWV) and PWV data calculated by GPS (GPS-PWV) were subjected to regression analysis to verify the reliability of the GPS-PWV data. The research results show that GPS-PWV and ECMWF-PWV have extremely high correlations; however, the climatic characteristics of some regions and the high spatial resolution of GPS-PWV are able to accurately calculate the high topographic relief of small areas. It is judged that the GPS-PWV is more accurate than the ECMWF-PWV. It is worth noting that the PWV trend of the regions during the 6-year-before period has not changed very much, but the rainfall trend has changed obviously. Except for the eastern region, most of the regions show a decreasing trend year by year. More long-term observations are still needed to prove whether this phenomenon relates to global warming. Long-term rainfall analysis showed that the topography blocked water vapor to the western, southern, and mountainous regions, making them distinctly wet or dry. The harmonic curve showed great consistency with the peaks of PWV and rainfall. However, in the northern and eastern parts of the windward side, the time when maximum rainfall occurred each year may be one month later than the time when the maximum PWV value occurred each year. The reason for this difference is likely to be a decrease in the number of autumn typhoons, resulting in a nearly one-month difference in PWV peaks and rainfall peaks. Finally, we analyzed the linear trend of GPS-PWV and temperature for all regions in Taiwan, and found that annual increasing rate of GPS-PWV and temperature of all regions are within 0.4–0.5 mm/year and 0.04–0.11 C°/year, respectively.  相似文献   

13.
Quartz-UV occultation measurements by the satellite Interkosmos-16 have been used to calculate ozone densities at altitudes between 50 and 90 km for the period August to October 1976. Below 65 km densities agree well with the Krueger-Minzner-model. Mesopause densities have been studied in some detail. A certain percentage of the profiles show close correlation with the model of Shimazaki and Laird (with a pronounced minimum below the mesopause) while others fit better to the Park and London model (no minimum). This variability of the ozone density may be caused by different processes in the photo-chemistry of ozone. Two possible causes, the temperature dependent rate coefficients and the odd hydrogen processes are discussed in greater detail.  相似文献   

14.
The 2D and 3D numerical simulation is used for the investigation of current sheet (CS) creation above the active region. The current sheet in the solar corona can be created either in vicinity of a magnetic field singular line by focusing disturbances or at the interaction of the super-Alfvenic plasma flow with the perpendicular magnetic field.  相似文献   

15.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   

16.
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree.  相似文献   

17.
18.
Using the Clark Lake Radioheliograph data we present direct evidence that type III electron streams propagate in dense coronal streamers. We also present imaging observations of meter-decameter microbursts, which appear to be similar to those observed in hard X-rays. At meter-decameter wavelengths, these microbursts appear to be due to plasma radiation. From observations made with ISSE-3, we discuss the characteristics of hectometer and kilometer wavelength radio bursts. In particular, we show that from studies of type III storms that the exciter electrons propagate along spiral structures, where the density is enhanced and that there is an acceleration of the solar wind. We discuss type II bursts at kilometer wavelengths, compare them with meter type II bursts and discuss their association with interplanetary shocks. We show that the interaction between type III electron streams and shocks at kilometer wavelengths can provide information on the interplanetary shock geometry. Finally, we discuss the possibility that some shock associated (SA) events may be emissions caused by electrons accelerated lower in the atmosphere rather than high in the corona in type II shocks.Recent advances in solar research have resulted from new work on plasma radiation theory, new observations of active regions and flares across the electromagnetic spectrum and the availability of spacecraft in situ measurements of solar ejecta. In this paper, we review some results obtained with the Clark Lake multifrequency radioheliograph at meter-decameter wavelengths and from satellite multifrequency directive observations at hectometer and kilometer wavelengths. We present evidence that type III electrons propagate in dense coronal streamers, and that frequently observed microbursts (presumably of type III) at meter-decameter wavelengths are due to plasma radiation. We discuss observations of hectometer and kilometer type III radio storms which reveal information about active region structures, interplanetary magnetic field configuration, and solar wind acceleration. We also discuss kilometer type II bursts, interactions between type III electrons and interplanetary shocks, and present some new results on shock associated (SA) events.  相似文献   

19.
The characteristics of solar energetic particle events as observed in interplanetary space depend on many physical processes acting at the source and during the transport from the source to the observer. These processes, such as acceleration at the Sun and the propagation near the Sun and in interplanetary space depend, in general, on both the particle velocity and rigidity. Thus, the evaluation of both the nuclear charge and/or atomic mass and the ionic charge of heavy ions turns out to be essential for the interpretation of the physical parameters observed, such as the energy spectra and the compositional variations during individual solar energetic particle events. In this paper recent results on the direct determination of the charge states of He, C, O, and Fe will be summarized. Using these results the compositional variations during individual solar particle events will be discussed. It will be shown that ratio changes by a factor of ~ 10 during the onset phase of solar particle events, as frequently observed, could be explained not only by rigidity dependent interplanetary propagation, but also by rigidity dependent diffusive propagation in the corona. However, there is now increasing experimental evidence that also other processes, such as compositional variations at the source and discontinuities of the interplanetary magnetic field, separating two different particle populations, may be important. Thus the picture emerges that these variations do not have a unique explanation but rather that each event has to be investigated individually.  相似文献   

20.
The SCanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) is part of the payload of ESA’s Environmental Satellite ENVISAT which was launched into a sun-synchronous polar orbit on 2002-03-01. It is the first spaceborne instrument covering a wavelength range from 240 to 2380 nm thus including ultraviolet, visible and near infrared spectral regions.The main purpose of SCIAMACHY is to determine the amount and distribution of a large number of atmospheric trace constituents by measuring the radiance backscattered from the Earth. In addition, several solar observations are performed with daily or orbital frequency.The presented results will cover the following topics: (a) comparison of the solar irradiance measured by SCIAMACHY with data from the instruments SOLSPEC/SOLSTICE/SUSIM and a solar spectrum derived by Kurucz; (b) comparison of the SCIAMACHY solar Mg II index with GOME and NOAA data; (c) correlation of the relative change of solar irradiance measured by SCIAMACHY with the sun spot index.The mean solar irradiance for each of the 8 SCIAMACHY channels agrees with the Kurucz data within ±2–3%. The presented analysis proves that SCIAMACHY is a valuable tool to monitor solar irradiance variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号