首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
非线性系统的在线鲁棒故障检测   总被引:3,自引:1,他引:3  
提出了一种具有建模不确定性的非线性系统在线故障检测方法。故障被假定为状态变量和输入变量的函数,该系统仅是输入、输出可测量的。一种基于RBF神经网络的在线非线性估计器用来跟踪系统中的出现的故障,该估计器对有建模不确定性的非线性系统的故障检测具备良好的鲁棒性。文中所提出的方法的收敛性在理论上进行了较详细证明。仿真实例说明了该故障检测方法的有效性和实用性。  相似文献   

2.
提出了一种利用小波神经网络辨识非线性系统多模型故障的方法。证明了状态估计误差渐近收敛到零,同时证明了如果激活函数满足持续激励条件,辨识器参数将趋于理想辨识器参数。分析了多模型辨识结构,并将小波神经网络作为辨识器应用于多模型故障检测。给出了小波神经网络进行非线性系统逼近的实例,用小波神经网络辨识器对多故障模型检测进行了仿真,证明了此方法的正确性和可行性。  相似文献   

3.
提出了一种新的非线性观察器设计方法。与一般方法采用神经网络逼近整个非线性系统不同,该方法用RBF神经网络逼近系统的非线性项,故提高了状态估计的精度。基于李亚普诺夫方法,证明了状态估计误差渐近稳定且渐近收敛到零。仿真结果表明,所提出的非线性观察器设计方法具有良好的性能。在故障检测、状态估计等领域具有广泛的应用前景。  相似文献   

4.
提出一种基于RBF神经网络来提高漏磁检测对储油罐底板裂纹缺陷的量化能力的方法。首先利用有限元仿真计算了不同长度、宽度、深度和倾斜角度的槽型缺陷漏磁信号,分析漏磁信号分布规律并提取磁异常幅值和占宽作为磁信号特征量,探讨了磁信号特征量与缺陷尺寸之间的关系并组建样本集。其次,建立RBF神经网络与模拟退火算法相结合的量化模型,并使用样本集对RBF神经网络进行训练,预测缺陷大小及倾角。结果表明,磁异常特征量随缺陷尺寸及角度呈现不同变化规律,通过RBF神经网络建立复杂关系网,结合模拟退火算法可精确量化缺陷,样本集内缺陷平均量化正确率约为98.71%,样本集外缺陷平均量化正确率约为86.67%。因此,基于RBF神经网络并且结合模拟退火的方法可应用于漏磁检测对储油罐底板的缺陷量化,为储油罐的安全评估提供理论依据。  相似文献   

5.
提出一种新的航空发动机滚动轴承故障诊断方法。利用小波包分解对轴承的动态信号进行分析、提取特征,采用RBF神经网络进行承故障诊断。对7类故障进行了实验,结果表明该方法具有很好的故障诊断效果。  相似文献   

6.
应用混沌理论,分析了网络流量,用单变量的网络流量时闯序列重构与网络动力系统等距同构的相空间,进而计算了实际网络的关维数和Lyapunov指数,并证实了网络流量存在混沌特性;据此建立了基于径向基函数(RBF)神经网络的模型,并对实际网络数据流进行了预测。仿真结果表明,相对于其他前馈神经网络预测,基于混沌理论的RBF神经网络预测方法学习速度快,预测精度高。  相似文献   

7.
因支持向量机算法对在线课程平台的学习行为分析有误差,提出了一种基于大数据的随机森林模型的特征加权支持向量机RFG-SVM算法,该算法是在传统支持向量机算法上做完善、修改。利用Gini指数对特征变量计算,再计算RF模型分类识别的准确度,获得特征设定权重值,完成权重值在支持向量机的核函数中的计算。实验结果表明,通过对不同学习行为的学生的学习效果的预测,发现该方法能有效帮助教育者通过在线平台分析学习者的学习行为,预测学习效果,具有更高的准确率和稳定性。  相似文献   

8.
基于Hopfield神经网络的非线性系统故障估计方法   总被引:2,自引:0,他引:2  
针对一类故障参数是线性可分的非线性系统,在参数故障情况下提出了一种基于Hopfield递归神经网络的故障估计方法。利用Hopfield递归神经网络的自学习能力和稳定性理论,将故障参数的估计问题转化为Hop-field神经网络的稳定性问题,克服了现有数值方法存在量化误差和算法收敛性等问题。与自适应观测器和等价空间方法等相关故障参数估计方法相比,具有设计简单、易于实现和适用性宽等特点。仿真结果表明,对于常值故障和时变故障,诊断系统均具有较好的估计效果和动态性能。  相似文献   

9.
提出一种利用模糊径向基函数(Radial basis function,RBF)神经网络进行直升机旋翼不平衡故障诊断的方法,建立了用于直升机旋翼不平衡故障识别的模糊诊断模型。基于直升机旋翼不平衡故障模拟实验,对采集于旋翼配重不平衡、桨距不平衡、后缘调整不平衡和正常状态下的试验台体振动信号进行功率谱分析,并采用主分量分析(Principal component analysis,PCA)的方法进行故障特征提取。采用模糊RBF神经网络诊断模型对旋翼不平衡故障进行了故障分类识别,同时分析了不同主分量累计贡献率和模糊子空间对故障分类精度的影响,并与RBF神经网络的诊断模型、支持向量机(Support vector machine,SVM)诊断模型进行了故障识别效果对比。结果表明,模糊聚类RBF神经网络的诊断方法对旋翼不平衡故障具有更好的识别能力。  相似文献   

10.
针对运载火箭推力下降故障下难以实现在线弹道重构的问题,提出了一种基于神经网络的剩余运载能力估计及程序角重构的算法。以线下基于工程实践的弹道优化方法生成的故障状态下最优弹道作为学习样本,针对程序角曲线的特点,分别使用不同学习方式学习一级飞行段程序角和其他飞行段程序角;分析不同超参数对神经网络训练过程的影响,利用随机搜索法选取超参数。该算法使用以神经网络为核心的机器学习思想,用基于数据的方式避免了因运载火箭动力学模型复杂而无法在线快速求解最优弹道的问题,能够解决大气环境下弹道重构的难题。仿真结果表明,该算法对剩余运载能力估计准确,重构程序角与最优弹道相比误差小,运算速度相比其他方法优势明显。  相似文献   

11.
首先介绍了国内外关于空中交通复杂度的定义及研究现状。然后在现有的空中交通复杂度模型中挑选空中交通复杂度参数,再利用自组织神经网络,分析所选取的空中交通复杂度参数之间的关系,达到将高维空中交通复杂度参数进行降维分析的目的。然后对于优化了的空中交通复杂度参数使用RBF神经网络进行预测,比较预测结果,得到最优的空中交通复杂度参数。  相似文献   

12.
为保证小型无人机的飞行安全,提出一种由无人机飞行控制器和地面学习单元构成的两层网络学习控制系统架构。无人机飞行控制器采用模糊控制策略,学习单元采用经遗传算法优化的径向基神经网络,充分利用模糊控制和神经网络的各自优势,将模糊控制策略与RBF神经网络相结合提出了一种基于RBF神经网络的自学习模糊控制策略。所设计的飞行控制器用于无人机飞行过程中的姿态控制,仿真及实验结果表明本方法是有效的。  相似文献   

13.
基于SVM方法的APU故障预测方法   总被引:2,自引:1,他引:2  
针对辅助动力装置(Auxiliary power unit,APU)故障预测时,仅基于快速存取记录器(Quick access recorder,QAR)数据存在实时性欠缺或精度不足的问题,提出了基于实时报文数据的APU故障预测方法。首先,对报文所采集的数据进行预处理,将每次航班的报文数据规整为一条数据集;其次,从参数阈值、维修记录及APU序列号变化情况等角度对数据集进行标注工作;随后,针对特征选择算法具有较差解释性的缺点,提出通过相关性分析选取能够表征APU运行性能的参数;最后,建立基于支持向量机(Support vector machine,SVM)的多参数故障预测模型并优化。经验证,该模型提高了预测正确率,为APU视情维修策略的制定提供参考。  相似文献   

14.
水滴平均体积直径(Mean volumetric diameter,MVD)和液态水含量(Liquid water content,LWC)是两个影响飞机结冰的重要气象参数,但在实际中难以准确测得,如果能够实时、准确地获取这两个参数可以为积冰预测和飞机适航认证标准的建立提供一些指导。文中提出了一种基于遗传算法优化神经网络的结冰气象参数预测模型。以不同测点组合的冰厚和结冰速率、环境温度、飞行速度和机翼迎角为输入参数,结冰气象参数MVD和LWC为输出参数,构建遗传算法优化的结冰气象参数预测模型,并通过预测模型对数值计算测试组数据和结冰风洞实验数据的结冰气象参数进行预测。结果表明,基于遗传算法优化Elman神经网络的预测模型对结冰气象参数的测试组预测相对误差在10%以内,实验数据相对误差在20%以内,该方法具有一定的可行性。  相似文献   

15.
在构建某型发动机燃油系统故障诊断贝叶斯网络模型的基础上,提出逆向推理的最强依赖路径算法,通过该算法可以对故障可能的原因按概率大小进行排序,进而快速、准确地对故障进行定位,从而大大提高复杂系统故障诊断的效率。  相似文献   

16.
提出了一种基于迭代学习观测器(ILO)将故障检测和容错控制进行统一设计的方法。迭代学习观测器不仅可以用于进行状态估计和故障检测,而且可以用于获得控制输入调节项并进行故障估计。设计重构控制律的基本思想是利用估计状态和控制输入调节项来补偿故障引起的影响。文中还给出了特定假设条件下闭环重构控制系统稳定性的严格证明。理论分析和仿真研究表明,所提的方法是有效的并可保证闭环系统具有良好的重构性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号