首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
针对磁悬浮控制敏感陀螺(MSCSG)转子偏转通道强耦合及航天器姿态测量过程中受扰失稳问题,提出了一种磁悬浮转子偏转解耦抗干扰控制方法。分析了转子两自由度偏转耦合现象,设计了基于状态反馈的解耦控制器;建立了MSCSG在姿态测量过程中航天器的姿态运动对磁悬浮转子产生的干扰力矩模型,采用自抗扰控制器(ADRC)抑制磁悬浮转子的外部干扰;对所建立的扩展状态观测器(ESO)跟踪性和系统稳定性进行了分析,通过调节ADRC中非线性状态误差反馈控制律系数,实现了系统有界输入条件下的稳定。仿真结果表明:状态反馈解耦能够实现偏转自由度的完全解耦,ESO具有良好的跟踪性能,ADRC较传统PID控制方法具有更好的抗干扰性能。  相似文献   

2.
针对磁悬浮控制敏感陀螺(MSCSG)空间应用问题,研究其多自由度角动量包络模型。依据MSCSG的机械结构,分析磁悬浮转子径向万向偏转特性,明晰MSCSG轴向一个自由度转子转速变化飞轮力矩和径向两自由度转子万向偏转陀螺力矩输出机理。基于洛伦兹力磁轴承(LFMB)原理,分析径向偏转力矩与控制电流的线性关系,揭示MSCSG陀螺力矩高精度高带宽的优势。考虑转子径向偏角和轴向转速饱和问题,基于重构偏角和旋转矩阵构建MSCSG角动量包络模型。仿真分析了MSCSG径向偏转力矩高精度高带宽、轴向飞轮力矩高精度的特性。开展MSCSG偏转力矩高带宽性能测试,实验验证MSCSG能够输出大于100 Hz的径向偏转力矩。研究结果表明,MSCSG具有航天器高动态微振动抑制和高精度姿态控制的空间应用前景。  相似文献   

3.
磁悬浮控制敏感陀螺(MSCSG)是一种将姿态控制和姿态测量功能合二为一的新型陀螺,采用洛伦兹力磁轴承(LFMB)控制转子径向偏转。针对MSCSG 2个测量轴之间存在耦合的问题,提出了一种基于逆系统解耦的测量方法。首先,分析了MSCSG的结构组成,在此基础上建立了LFMB-转子系统动力学模型,推导了MSCSG陀螺进行两自由度姿态测量的工作原理;然后,分析了2个测量轴之间的耦合关系,进而提出采用逆系统对2个测量轴进行解耦。最后,对所提方法的有效性进行了仿真验证。仿真结果表明:在所提解耦方法作用下,2个测量轴之间的耦合效果得到了很好的抑制,测量精度得到了一定的提高。   相似文献   

4.
针对磁悬浮控制力矩陀螺(MSCMG)动框架效应导致转子悬浮精度和稳定性降低的问题,提出一种角加速率自适应前馈控制与自抗扰控制(ADRC)相结合的复合控制方法。建立了MSCMG转子动力学模型,分析了框架转动情况下的磁轴承扰动力矩,设计了角加速率自适应算法和线性扩张状态观测器,并结合状态反馈控制设计了复合控制器,同时对磁轴承控制系统进行了稳定性分析,仿真结果验证了所提复合控制方法的有效性。利用研制的样机搭建实验平台进行验证,结果表明:所提方法与传统PID控制方法相比,磁悬浮转子收敛后的位移峰峰值降低了39.6%,提高了磁悬浮系统的抗干扰能力。   相似文献   

5.
磁悬浮控制敏感陀螺以洛伦兹力磁轴承(LFMB)为力矩器驱动转子偏转。针对磁悬浮控制敏感陀螺转子径向转动自由度间存在耦合的问题以及转子偏转高精度快响应要求,提出一种前馈解耦内模控制方法。根据洛伦兹力磁轴承的工作原理建立了转子偏转动力学模型,并设计了前馈解耦矩阵实现转子径向偏转解耦,在此基础上,采用二自由度内模控制器(2-DOF IMC)对转子进行高精度快响应偏转控制。MATLAB仿真结果表明所提出的控制方法可有效实现对陀螺转子偏转的完全解耦,且转子偏转响应时间较交叉PID算法减少57.1%,受0.1sin(2πt)°正弦信号扰动影响产生的偏转波动幅值较交叉PID算法减少76%。   相似文献   

6.
  总被引:2,自引:2,他引:0  
磁悬浮控制敏感陀螺(MSCSG)是一种新概念陀螺,采用洛伦兹力磁轴承为力矩器驱动转子径向偏转。针对MSCSG转子旋转过程中产生不平衡振动的问题,分析了不平衡振动产生原理,并建立了解析模型。首先,分析了MSCSG的工作原理。然后,确定了转子不平衡条件下转子几何轴与惯性轴间的几何解析关系;推导了转子不平衡振动力矩数学模型,并对不平衡扰动量的能观性进行了判定;建立了包含振动源的磁轴承-转子控制系统模型,对闭环系统的不平衡振动产生机理进行了分析,并对不同转速下不平衡振动的响应特性进行仿真,仿真结果验证了所提出模型的正确性。最后,根据转子不平衡振动的特点提出了对其进行抑制的要求,为实现MSCSG转子不平衡振动控制奠定了理论基础。  相似文献   

7.
磁悬浮控制力矩陀螺(MSCMG)转子的稳定悬浮是实现陀螺高精度大力矩输出的关键。针对影响转子稳定悬浮的转子径向偏转耦合、非线性参数摄动、动框架效应问题,建立转子的动力学模型,提出了一种基于反馈线性化的增强型内模控制方法。利用反馈线性化方法实现径向偏转运动解耦以及转子动力学模型的线性化,设计增强型内模控制对转子系统的非线性参数摄动进行补偿并有效抑制动框架效应,提升了转子系统的稳定性。MATLAB仿真结果表明:所提出的控制方法实现了转子偏转的完全解耦,与PID控制相比,所提方法可以有效抑制参数摄动对转子径向平动的影响。对于转子径向偏转,与PID交叉控制相比,所提方法可以有效抑制框架扰动,提高系统控制精度。   相似文献   

8.
  总被引:1,自引:0,他引:1  
针对航空发动机是一个不确定性的强非线性系统,借鉴预测控制的思想,提出了基于径向基函数RBF (Radical Basis Function)网络的航空发动机预测滑模控制.首先利用RBF网络建立航空发动机预测模型,进而得到滑模预测模型;其次在线修正网络参数实时反馈校正滑模预测模型,滚动优化求取控制量;然后采用另外一个RBF神经网络实现了全包线建模和控制;最后分析了控制系统的收敛性.仿真结果表明,所设计的控制器性能良好,能有效地抑制参数摄动和干扰的影响.  相似文献   

9.
针对单滑块滚控式变质心飞行器的欠驱动问题,提出基于自抗扰思想的控制器,利用横向配置单滑块实现指令滚转角跟踪和侧滑角镇定控制。应用质点系动量矩定理建立了系统姿态动力学模型,分析表明,滚转和偏航通道拥有同一控制输入,且存在滑块惯性和运动耦合,滑块横向偏移会影响偏航通道。为此,设计自抗扰控制(ADRC)器进行滚偏耦合控制,将模型误差、滑块耦合和不确定干扰视作总和扰动,对滚转角跟踪子系统和侧滑角镇定子系统同时进行状态观测和总和扰动动态补偿,该控制器能够较好地抵抗系统内外干扰,且结构简单、易于实现。摄动仿真结果验证了所提控制器的有效性和鲁棒性。   相似文献   

10.
为提高磁悬浮控制敏感陀螺(MSCSG)对陀螺载体姿态的敏感精度,基于其洛伦兹力磁轴承(LFMB)的设计结构,提出了一种力矩器非圆性误差补偿方法。首先,针对一种新型双球形包络面转子MSCSG,介绍了MSCSG的结构特点与陀螺载体姿态角速度敏感原理,并分别建立了MSCSG力矩器半径误差模型、转子偏转干扰力矩模型与陀螺载体姿态角速度敏感误差模型。其次,通过实验测量了力矩器的圆度,通过MATLAB进行数据拟合得到了力矩器的非圆特性,采用勒让德多项式级数对力矩器非圆性进行了描述,并有效补偿了因力矩器非圆性误差导致的姿态角速度敏感误差。最后,对误差补偿效果进行了仿真验证,结果表明该补偿方法使陀螺载体姿态角速度敏感误差降低了83.5%。此外,本文方法还可以解决LFMB陀螺的相关共性问题。   相似文献   

11.
吊挂系统是地面模拟空间机械臂重力卸载试验的重要方法之一.针对传统PID控制方式动作响应慢、鲁棒性差等缺点,提出了一种基于径向基函数(RBF)神经网络的智能控制方式.该方式有很强的非线性拟合能力,且学习规则简单,可映射任意复杂的非线性关系,便于计算机实现.利用该特性,设计了一种重力卸载精度较PID控制方式更高的控制器.该...  相似文献   

12.
基于ADRC的MSCMG框架系统高精度控制   总被引:1,自引:1,他引:1  
针对非线性摩擦和外部随机扰动影响磁悬浮控制力矩陀螺(MSCMG, Magnetically Suspended Control Moment Gyroscope)框架系统角速率精度的问题,提出了一种基于自抗扰控制器(ADRC, Active Disturbance Rejection Controller)的高精度转速控制方法.通过三阶扩张状态观测器将框架系统负载力矩、非线性摩擦力矩及外部随机扰动力矩作为"总扰动"进行估计,并对该扰动力矩进行补偿.仿真及实验结果表明:基于自抗扰控制器的框架系统控制方法使框架转速精度和稳定度提高了50%以上,且具有抗干扰能力强和动态特性好的特点.  相似文献   

13.
直接力/气动力复合控制导弹 自适应模糊滑模控制   总被引:2,自引:1,他引:1  
针对采用直接力/气动力复合控制导弹所具有的强耦合非线性等特性,提出了一种基于自适应模糊滑模控制的自动驾驶仪设计方法.该方法利用自适应模糊系统所具有的万能逼近特性,对大攻角飞行过程中导弹动力学系统存在的非线性特性进行逼近,并利用变结构控制对外界干扰的强鲁棒性,构造误差系统滑模面,克服了逼近误差和外界干扰对控制系统的影响,实现了对大机动指令的精确跟踪.仿真结果表明,所设计的控制方法对大过载指令有较好的跟踪效果,对模型不确定性和外界干扰也具有较好的鲁棒性.由于采用直接力/气动力复合控制,有效的减小了气动舵偏角,避免了气动舵的饱和.   相似文献   

14.
针对永磁同步电机(PMSM)由于参数变化和外界干扰导致控制性能下降的问题, 提出了一种基于扩展状态观测器(ESO)的超局部无模型转速预测控制(MFSPC)方法, 并解决了数字系统中的一拍延迟问题。该方法仅利用速度环的输入和输出, 不考虑电机参数, 避免了因电机参数变化导致的模型失配。针对传统MFSPC方法参数调整多、工作量大、输出脉动大、抖振明显、抗干扰性和鲁棒性差的问题, 建立了ESO, 实时监测系统的总扰动, 并进行前馈补偿。利用ESO产生的转速预测, 解决了数字控制系统中的一拍延时问题, 并基于频域分析, 整定控制参数, 提高控制性能。实验结果分析表明:所提方法有较强的抗干扰性和鲁棒性, 能够稳定跟踪额定转速, 有较快的动态响应。   相似文献   

15.
基于自抗扰的运载火箭主动减载控制技术   总被引:1,自引:0,他引:1  
针对运载火箭穿越大风区的减载控制技术进行研究,首先对攻角反馈和加表反馈2种减载技术进行理论研究和仿真分析,得出2种方案对火箭减载都存在一定的局限性。因此引入自抗扰控制器(ADRC)技术并针对飞行减载控制对其进行改进,一方面通过状态观测器将误差补偿引入自抗扰回路;另一方面改进了自抗扰控制器中的控制律,并推导证明了新的控制律下自抗扰控制器抑制风载干扰的能力,给出了控制方程中增益的选择方法。最后以某型液体运载火箭为例在考虑其弹性振动和液体晃动条件下对比了几种方案的减载效果,仿真结果表明改进后的自抗扰控制器使飞控系统抗干扰能力增强,增大了控制律中增益选择范围,有效提高了运载火箭的减载效果,具有很强的工程应用价值。   相似文献   

16.
针对战斗机大机动飞行输入饱和问题,提出了一种自适应神经网络动态面控制方法。采用径向基(RBF)神经网络逼近飞机系统的不确定性,利用双曲正切函数处理系统的输入饱和问题,根据饱和受限后的实际控制输入与期望控制输入之差定义新误差变量,结合该误差变量设计大机动飞行控制律,并构造鲁棒项抵消神经网络逼近误差、外部干扰和建模误差的影响,利用动态面控制技术避免对虚拟控制器的复杂求导并减小计算量。根据Lyapunov稳定性定理证明了闭环控制系统所有信号有界,且通过选择合适的设计参数能够使姿态角跟踪误差收敛到原点的任意小邻域内。通过仿真结果的分析,验证了所提方法具有较好的鲁棒性和稳定性。   相似文献   

17.
基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪   总被引:2,自引:0,他引:2  
针对欠驱动四旋翼飞行器的控制特性,提出一种基于自抗扰控制(ADRC)的姿态解耦控制算法,该算法可以克服传统欠驱动四旋翼控制方法中存在的问题,如系统状态间耦合严重,抗干扰能力弱及系统建模误差对跟踪性能影响较大等弱点.该算法利用扩张状态观测器(ESO)实现状态间耦合项的跟踪和估计,同时ESO也可实现对系统干扰的估计,干扰包括系统内扰和外扰.利用动态反馈线性化将非线性MIMO系统转化成线性SISO系统,然后利用非线性反馈控制律实现四旋翼姿态系统的高品质控制,在上述姿态解耦控制的基础上研究飞行器的鲁棒轨迹跟踪问题,不同情况下的仿真结果验证了上述姿态控制算法可提高系统轨迹跟踪的鲁棒性.该算法不依赖于精确的系统模型,降低了实际应用的难度,并有很强的抗干扰能力,具有实际应用的价值.   相似文献   

18.
针对实际系统易受未知非线性、外界干扰和参数摄动等不确定因素影响的问题,以高精度模拟转台为例,采用一种基于RBF(Radial Basis Function)网络的自适应滑模控制器.控制器由名义反馈控制器和滑模干扰补偿器两个子系统组成.反馈控制器通过极点配置的方法实现,用来稳定名义系统.干扰补偿器使用一个自适应RBF网络在线辨识不确定性的上界值.计算机仿真结果表明了该法的鲁棒性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号