共查询到19条相似文献,搜索用时 31 毫秒
1.
2.
为获得高精度实时GPS卫星钟差,文章提出一种基于多项式和最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)相结合的钟差预报方法.该方法采用国际GNSS服务发布的超快速观测星历建模进行短期预报,首先根据卫星钟的物理特性用附有周期项的多项式模型进行拟合以提取趋势项和周期项,然后用LS-SVM对多项式拟合残差进行建模预报,最后将预报结果加上趋势项和周期项,得到最终的钟差预报值.试验结果表明,所提算法能够实时有效地对GPS卫星钟差进行预报,且精度优于超快速预报星历. 相似文献
3.
环境卫星-1的特性和用途 总被引:1,自引:0,他引:1
环境卫星 - 1(ENVISAT- 1)即将于2 0 0 1年 7月发射 ,这是欧空局 (ESA) 1颗先进的多用途卫星。星上装载了 8台遥感器 ,比美国的 EOS- AM1(后改名为 Terra,19 99年 12月 18日发射 )装载的遥感器更多 ,因此用途更广泛。1 ENVISAT- 1计划目的ESA分别于 1991年 4月和 1995年 4月发射了欧洲遥感卫星 - 1、 2 (ERS- 12)两颗卫星。目前 ,ERS- 2仍在运转 ,至今已积累了 10年对地观测资料。 EN-VISAT是 ERS计划的后续计划 ,它将继续开展对地观测和地球环境研究。ERS是海洋动力环境卫星 ,主要用于海洋动力学现象的探测 ,诸如海平… 相似文献
4.
5.
6.
7.
8.
9.
为了获得实时高精度GPS钟差,提出了采用快速星历建模进行短期预报。文章先对钟差数据提取趋势项,再利用傅里叶分析研究其周期特征以确定建模与预报时间段长度,最后利用径向基函数(Radial Basis Function,RBF)神经网络建模实时预报钟差。由于RBF神经网络用于非线性数据建模效果良好,在提取线性趋势项并合理确定建模周期后,该方法能够得到较好的预报结果。实际预报结果表明,文中方法得到的预报钟差精度高于超快速星历,能够满足分米级实时精密定位的要求。 相似文献
10.
星载GPS几何法实时定轨有关问题的研究 总被引:2,自引:0,他引:2
首先讨论了星载GPS几何法实时定轨的绝对定位方法和各种差分技术。由于伪距差技术能克服GPS卫星的星历误差、卫星钟误差,特别是SA误差的影响,而且实现难度不大,所以应用它来实时定轨。实测数据的处理表明,它能明显提高定轨的精度。然后分析了星载GPS所受扰动影响的情况,对应用抗差估计削弱GPS卫星信号扰动的影响进行了试验,试验的结果说明抗差估计能进一步提高星载GPS几何法定轨的精度。 相似文献
11.
针对编队小卫星间的相对飞行特点,在Hill方程描述编队飞行小卫星间相对运动的基础上,提出利用星间无线电测距的相对自主定轨,来获得环绕小卫星精确轨道的卫星定轨方法。通过具体仿真计算,并与小卫星GPS自主定轨方法相比较。仿真结果表明,此方法确实有效。 相似文献
12.
一种同步卫星授时方法的再探讨 总被引:1,自引:0,他引:1
通过对原有测轨和预报方案的改善,对共视时差法时刻比对的进一步研究.实验结果表明: 采用现在的测轨和预报方案,时刻比对的事后处理精度与以前相当,优于1,但预报精度比以前有了较大提高,对卫星轨道预报1星期,相应的时刻比对精度也基本可保持在1μs以内. 相似文献
13.
G. Huang Q. ZhangH. Li W. Fu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Over 60% clocks on board of the GPS satellites are working longer than their designed life. Therefore realizing their stabilities in a long time scales is essential to GPS navigation and positioning plus IGS time scale maintaining. IGS clock products from 2001 to 2010 are used to analyze the GPS satellite clock qualities such as frequency stabilities and clock noise level. We find out that for the clocks of Block IIA satellites the frequency stabilities and clock noise are 10 times worse than that of the Block IIR and IIR-M satellites. Moreover, the linear relationships between frequency stabilities and clock residuals have been deduced with an accuracy of better than 0.02 ns. Specially, it is noticed that the clock of the PRN27 is instable and the relationship between the frequency stability and residuals is at least a quadratic curve. Therefore, we suggested that GPS satellite clocks should be weighted by their quality levels in application, and the observations of the Block IIA should not be used for real-time positioning which required precision better than one meter. 相似文献
14.
Tom Van Helleputte Eelco Doornbos Pieter Visser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,43(12):1890-1896
Current and planned Earth observation missions are equipped with highly sensitive accelerometers. Before using the data, the instrument has to be calibrated by determining scale and bias parameters for each axis. Here, the accelerometer measurements are used in a GPS-based reduced-dynamic orbit determination approach, replacing the non-gravitational force models, and nominally daily calibration parameters are estimated. Additional empirical accelerations are estimated to account for deficiencies in the applied force models. This method is applied to 5 years of CHAMP and GRACE data, resulting in an orbit precision at the level of a few centimeters. In along-track direction the calibration parameters can be estimated freely, scale factors of 0.96 ± 0.014 and 0.95 ± 0.015 are obtained for GRACE A and B, and 0.85 ± 0.024 for CHAMP. A constant scale factor results in the smoothest bias series, with clear trends and occasional jumps. In radial and cross-track direction tight constraints to a priori biases have to be applied. Furthermore, the determined orbits are analyzed with respect to reference trajectories, and SLR, phase and KBR residuals are presented. 相似文献
15.
D. Kuang S. DesaiA. Sibthorpe X. Pi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001–2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers. 相似文献
16.
17.
Flavien Mercier Luca Cerri Jean-Paul Berthias 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The DORIS instrument on Jason-2 is the first of a new generation. The satellite receivers have now seven simultaneous measurement channels, with synchronous dual frequency phase and pseudo-range measurements. These measurements are now described in a similar manner as GPS measurements and an extension of the RINEX 3.0 format has been defined for DORIS. Data are available to users with a shorter latency. 相似文献
18.
Estrella Olmedo Noelia Sánchez-Ortiz Nuria Guijarro Jaime Nomen Holger Krag 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In the framework of a potential European Space Situational Awareness System (ESSAS), we propose some optical strategies such that try to minimize the requirement of tracking measurements for the orbit determination computation when the catalogue is under construction. We will analyse them in terms of coverage, timeliness and orbit determination accuracy by means of the AS4 simulator (developed by Deimos Space S.L.U.). Moreover, observation campaigns have been performed from La Sagra Observatory in order to check the applicability of those strategies. These strategies are used for defining different choices for the future European Optical Space Surveillance System in the framework of the ESA contract no. 22738/09/D/HK. 相似文献