首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.  相似文献   

2.
《中国航空学报》2016,(3):789-798
This paper presents an integrated fuzzy controller design approach to synchronize a dis-similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu-ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi-tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance.  相似文献   

3.
This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already during the optimization. Consequently, the trajectory is designed such that the Linear Time-Varying(LTV) dynamic system, describing the controller’s error dynamics, is stable, while additionally the desired optimality criterion is optimized and all enforced constraints on the traje...  相似文献   

4.
For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.  相似文献   

5.
This paper presents the controller design for the path following of a spherical mobile robot,BHQ-1.Firstly,a desired velocity for the reference path is deduced from the kinematic model,which cannot be transformed into the classic chained form.Secondly,a necessary torque for the desired velocity is obtained based on the dynamic model.As to the kinematics,a one-dimensional function is selected to measure the two-directional tracking error,and the velocity of rolling forward is reasonably assumed to be constant;therefore the multiple-input multiple-output (MIMO) system is transformed into a single-input single-output (SISO) system.As to the dynamics,both exact dynamics and inexact dynamics with modeling error as well as bounded unknown disturbance are taken into account,based on which a proportional-derivative (PD) controller and a sliding mode controller with adaptive parameters are proposed respectively.Finally,convergence analysis and simulation results are provided to validate these controllers.  相似文献   

6.
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.  相似文献   

7.
《中国航空学报》2016,(3):688-703
An adaptive sliding mode control(ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot.Each joint of the system is a free ball joint capable of rotating with three degrees of freedom(DOF).A cluster of control moment gyroscopes(CMGs) is mounted on each link and the base to actuate the system.The modified Rodrigues parameters(MRPs) are employed to describe the angular displacements,and the equations of motion are derived using Kane's equations.The controller for each link or the base is designed separately in decentralized scheme.The unknown disturbances,inertia parameter uncertainties and nonlinear uncertainties are classified as a ‘‘lumped" matched uncertainty with unknown upper bound,and a continuous sliding mode control(SMC) law is proposed,in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty.A general amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input.Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method.Simulation results based on a three-link system verify the effectiveness of the proposed controller.  相似文献   

8.
《中国航空学报》2016,(2):335-345
Studied in this paper is dynamic modeling and simulation application of the receiver aircraft with the time-varying mass and inertia property in an integrated simulation environment which includes two other significant factors, i.e., a hose–drogue assembly dynamic model with the variable-length property and the wind effect due to the tanker's trailing vortices. By extending equations of motion of a fixed weight aircraft derived by Lewis et al., a new set of equations of motion for a receiver in aerial refueling is derived. The equations include the time-varying mass and inertia property due to fuel transfer and the fuel consumption by engines, and the fuel tanks have a rectangle shape rather than a mass point. They are derived in terms of the translational and rotational position and velocity of the receiver with respect to an inertial reference frame. A linear quadratic regulator(LQR) controller is designed based on a group of linearized equations under the initial receiver mass condition. The equations of motion of the receiver with a LQR controller are implemented in the integrated simulation environment for autonomous approaching and station-keeping of the receiver in simulations.  相似文献   

9.
Sliding mode tracking control for miniature unmanned helicopters   总被引:1,自引:2,他引:1  
A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter’s dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles’ dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.  相似文献   

10.
This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected directed information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demonstrate the effectiveness of the proposed control schemes.  相似文献   

11.
Wei LI  Qiang ZHAN 《中国航空学报》2019,32(6):1530-1540
Spherical mobile robot has compact structure, remarkable stability, and flexible motion,which make it have many advantages over traditional mobile robots when applied in those unmanned environments, such as outer planets. However, spherical mobile robot is a special highly under-actuated nonholonomic system, which cannot be transformed to the classic chained form. At present, there has not been a kinematics-based trajectory tracking controller which could track both the position states and the attitude states of a spherical mobile robot. In this paper, the four-state(two position states and two attitude states) trajectory tracking control of a type of spherical mobile robot driven by a 2-DOF pendulum was studied. A controller based on the shunting model of neurodynamics and the kinematic model was deduced, and its stability was demonstrated with Lyapunov's direct method. The control priorities of the four states were allocated according to the magnification of each state tracking error in order to firstly ensure the correct tracking of the position states. The outputs(motor speeds) of the controller were regulated according to the maximum speeds and the maximum accelerations of the actuation motors in order to solve the speed jump problem caused by initial state errors, and continuous and bounded outputs were obtained. The effectiveness including the anti-interference ability of the proposed trajectory tracking controller was verified through MATLAB simulations.  相似文献   

12.
飞机表面爬行机器人轨迹跟踪控制方法研究   总被引:2,自引:0,他引:2  
针对飞机蒙皮铆钉缺陷无损检测移动机器人进行了运动学和动力学建模,并且基于该移动机器人的模型,设计了双闭环轨迹线性化控制器(trajectory linearization control,TLC)。同时设计了逻辑控制算法保证机器人运动轴在达到完整约束临界点时进行状态切换。该方法解决了在飞机特殊表面环境下,对基于X-Y平台的新型爬行机器人如何完成轨迹跟踪控制的问题。实验结果表明,该控制器具有较好的动态性能,能够在满足系统实时性要求的前提下实现爬行机器人距离精确性和速度稳定性控制。  相似文献   

13.
惯性参数不确定的自由漂浮空间机器人自适应控制研究   总被引:3,自引:2,他引:3  
张福海  付宜利  王树国 《航空学报》2012,33(12):2347-2354
针对自由漂浮空间机器人系统惯性参数不确定问题,提出一种笛卡儿空间内的自适应轨迹跟踪控制方法。采用扩展机械臂模型建立了自由漂浮空间机器人关节空间动力学方程,进而推导笛卡儿空间中的自由漂浮空间机器人动力学方程。在基于逆动力学法的自由漂浮空间机器人自适应控制器设计中,利用标称控制器离线固定控制参数与补偿控制器在线补偿方法,既可以保证惯量矩阵可逆,又可以使控制参数实时估计。采用Lyapunov方法的稳定性分析表明系统是稳定且渐进收敛的。最后,应用该控制方法对两杆平面自由漂浮空间机器人进行了仿真研究。仿真结果显示自由漂浮空间机器人末端执行器在笛卡儿空间具有良好的轨迹跟踪能力。  相似文献   

14.
针对近空间可变翼飞行器在小翼切换过程中存在参数不确定性的问题,设计了滑模控制和反步法相结合的控制方法以保证飞行器的跟踪性能。首先研究了近空间可变翼飞行器的纵向运动模型,在此基础上设计了速度和高度的反步控制器,同时采用动态面控制方法消除微分膨胀问题,然后结合滑模控制以增强控制器的跟踪性能,最后基于Lyapunov稳定性理论证明了系统的稳定性。仿真结果表明,在参数不确定性时滑模反步控制器能保证系统的稳定性和跟踪性能。  相似文献   

15.
针对多无人机绳索悬挂协同搬运跟踪控制问题,设计了一种新的固定时间协同跟踪控制算法.首先,通过旋量分析,计算系统不同状态下的有效旋量空间,并根据静力学平衡计算系统在有效旋量空间约束下的拉力容许裕度.其次,在保证绳索张紧以及最大拉力约束的条件下,基于微分平坦性以及绳索拉力优化分配算法,规戈编队的期望跟踪轨迹.然后,基于Ud...  相似文献   

16.
基于LADRC的无人直升机轨迹跟踪   总被引:4,自引:1,他引:3  
无人直升机轨迹控制系统是对多输入/多输出强耦合非线性系统进行解耦控制的系统。为解决无人直升机轨迹控制效果依赖于直升机物理参数的测量和辨识精度以及外部扰动大小问题,提出了一种基于线性自抗扰控制(LADRC)的多回路无人直升机轨迹控制系统。首先建立无人直升机X-Cell的飞行动力学模型,并引入风切变、大气紊流和突风模型以更加准确模拟真实飞行环境;然后对X-Cell进行配平计算以验证动力学模型和配平算法的准确性,并选取一组配平值作为轨迹控制仿真的初始状态和操纵量;随后根据被控量的动力学方程阶次选取对应的一阶和二阶LADRC基本控制器,并结合时间尺度原理,自内向外依次构建无人直升机的姿态、速度和位置控制回路,将三回路串联从而建立了无人直升机轨迹控制系统;而后进行了稳定性分析,特征根计算结果表明轨迹控制系统镇定了X-Cell开环系统不稳定的动态特性;最后将该控制系统应用于各种扰动下直升机轨迹跟踪仿真,结果表明本文无人直升机轨迹控制系统能很好地实现带爬升率的"8"字形轨迹跟踪,且相比于基于比例积分和微分(PID)控制的轨迹控制系统,该控制系统具有更优的鲁棒性和抗扰性。  相似文献   

17.
An approach is presented to the control of an uncertain nonlinear flexible robot arm (PUMA-type) with three rotational joints. The third link is assumed to be elastic. A torquer control law, which is a function of the trajectory error, is derived for controlling the joint angles. The knowledge of the system dynamics is not required for the derivation of the controller. This controller includes a reference model to generate command joint angle trajectories, and a dynamic system in the feedback path which requires only joint angle and rate for feedback. The torquer controller asymptotically decouples the elastic dynamics into two subsystems, representing the transverse vibration of the elastic link in two orthogonal planes. For the damping of the elastic vibration, a force control law using modal velocity feedback is synthesized. Simulation results are presented to show that the combination of the torque and force control law accomplishes reference joint angle trajectory tracking and elastic mode stabilization despite the uncertainty in the system  相似文献   

18.
利用假设模态法建立了柔性连杆机械臂的逆动力学方程,提出了一种并行于常规开环逆动力学控制的混合模糊控制方法对其进行末端轨迹跟踪。设计的控制器由两部分组成,一部分为根据结构的逆动力学以及机械臂末端所需跟踪的轨迹计算出控制力;另一部分为通过末端位置的实测与给定轨迹的偏差,利用一个辅助模糊控制对控制量进行调整,构成输出反馈部分。通过数字仿真,并与常规模糊控制结果的比较,表明借助于结构逆动力学,可以降低模糊控制器对知识库的需求,获得较好的控制稳态性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号