首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euglena gracilis is a photosynthetic, unicellular flagellate found in eutrophic freshwater habitats. The organisms control their vertical position in the water column using gravi- and phototaxis. Recent experiments demonstrated that negative gravitaxis cannot be explained by passive buoyancy but by an active physiological mechanism. During space experiments, the threshold of gravitaxis was determined to be between 0.08 and 0.12 x g. A strong correlation between the applied acceleration and the intracellular cAMP and Ca2+ was observed. The results support the hypothesis, that the cell body of Euglena, which is denser than the surrounding medium exerts a pressure onto the lower membrane and activates mechanosensitive Ca2+ channels. Changes in the membrane potential and the cAMP concentration are most likely subsequent elements in a signal transduction chain, which results in reorientation strokes of the flagellum.  相似文献   

2.
Orientation of organisms with respect to the gravitational field of the Earth has been studied for more than 100 years in a number of unicellular microorganisms including flagellates and ciliates. Several hypotheses have been developed how the weak stimulus is perceived. Intracellular statoliths have been found to be involved in gravitaxis of Loxodes, while no specialized organelles have been detected in other ciliates, e.g. Paramecium. Also in the slime mold Physarum no specialized gravireceptors have been identified yet. In the flagellate Euglena gracilis the whole cell body, which is denser than the surrounding medium, seems to act as a statolith pressing onto the lower membrane where it activates mechanosensitive ion channels. Similar results were obtained for the ciliate Paramecium. In contrast to the flagellate Euglena, several ciliates have been found to show gravikinesis, which is defined as a dependence of the swimming velocity on the direction of movement in the gravity field.  相似文献   

3.
Photosynthetic flagellates are among the most intensely studied unicellular organisms in the field of graviperception and gravitaxis. While the phenomenon of graviorientation has been known for many decades, only recently was the molecular mechanism unveiled. Earlier hypotheses tried to explain the precise orientation by a passive buoy mechanism assuming the tail end to be heavier than the front. In the photosynthetic flagellate Euglena gracilis, the whole cell body is denser than the surrounding medium, pressing onto the lower cell membrane where it seems to activate mechanosensitive ion channels specific for calcium. The calcium entering the cells during reorientation can be visualized by the fluorescence probe, Calcium Crimson. Cyclic AMP is likewise involved in the molecular pathway. Inhibitors of calcium channels and ionophores impair gravitaxis while caffeine, a blocker of the phosphodiesterase, enhances the precision of orientation.  相似文献   

4.
Gravitactic protozoa offer advantages in studying how the gravity stimulus is perceived on the cellular level. By means of a slow rotating centrifuge microscope in space the acceleration thresholds for gravitaxis of Loxodes striatus and Paramecium biaurelia were determined: < or = 0.15 x g for Loxodes and 0.3 x g for Paramecium, indicating different sensitivities of these species. Neutral-buoyant densities of immobilized cells were determined using media of different densities, revealing densities of 1.03 to 1.035 g/cm3 for Loxodes and 1.04 g/cm3 to 1.045 g/cm3 for Paramecium. Behavioral studies revealed that gravitaxis of Loxodes persisted independent of the density of the medium. In contrast, negative gravitaxis of Paramecium was no longer measurable if the density of the medium approached the density of the cell. The results suggest that in the case of Loxodes gravity is perceived by an intracellular receptor and, in the case of Paramecium by its own mass via the pressure on the lower cell membrane.  相似文献   

5.
Experiments under varied gravitational accelerations as well as in density-adjusted media showed that sensation of gravity in protists may be linked to the known principles of mechanosensation. Paramecium, a ciliate with clear graviresponses (gravitaxis and gravikinesis) is an ideal model system to prove this hypothesis since the ciliary activity and thus the swimming behaviour is controlled by the membrane potential. It has also been assumed that the cytoplasmic mass causes a distinct stimulation of the bipolarly distributed mechano-sensitive K+ and Ca2+ ion channels in the plasma membrane in dependence of the spatial orientation of the cell. In order to prove this hypothesis, different channel blockers are currently under investigation. Gadolinium did not inhibit gravitaxis in Paramecium, showing that it does not specifically block gravireceptors. Further studies concentrated on the question of whether second messengers are involved in the gravity signal transduction chain. Exposure to 5 g for up to 10 min led to a significant increase in cAMP.  相似文献   

6.
There is strong evidence that gravitactic orientation in flagellates and ciliates is mediated by an active physiological gravireceptor rather than by passive alignment of the cells in the water column. In flagellates the threshold for graviorientation was found to be at 0.12 x g on a slow rotating centrifuge during the IML-2 mission on the Shuttle Columbia and a subsequent parabolic rocket flight (TEXUS). During the IML-2 mission no adaptation to microgravity was observed over the duration of the space flight, while gravitaxis was lost in a terrestrial closed environmental system over the period of almost two years. Sedimenting statoliths are not likely to be involved in graviperception because of the small size of the cells and their rotation around the longitudinal axis during forward locomotion. Instead the whole cytoplasmic content of the cell, being heavier than the surrounding aqueous medium (1.05 g/ml), exerts a pressure on the lower membrane. This force activates stretch-sensitive calcium specific ion channels which can be inhibited by the addition of gadolinium which therefore abolishes gravitaxis. The channels seem to mainly allow calcium ions to pass since gravitaxis is blocked by the addition of the calcium ionophore A23187 and by vanadate which blocks the Ca-ATPase in the cytoplasmic membrane. Recently, a gene for a mechanosensitive channel, originally sequenced for Saccharomyces, was identified in Euglena by PCR. The increase in intracellular free calcium during reorientation can be visualized by the fluorophore Calcium Crimson using laser excitation and image intensification. This result was confirmed during recent parabolic flights. The gated calcium changes the membrane potential across the membrane which may be the trigger for the reorientation of the flagellum. cAMP plays a role as a secondary messenger. Photosynthetic flagellates are suitable candidates for life support systems since they absorb CO2 and produce oxygen. Preliminary experiments are discussed.  相似文献   

7.
The archaic eukaryote unicellular microorganism, Paramecium, is propelled by thousands of cilia, which are regulated by modulation of the membrane potential. Ciliates can successfully cope with gravity, which is the phylogenetically oldest stimulus for living things. One mechanism for overcoming sedimentation is negative gravitaxis, an orientational response antiparallel to the gravity vector. We have postulated the existence of a negative gravikinesis in Paramecium, i.e. a modulation of swimming speed as a function of cellular orientation in space. With negative gravikinesis, an upward oriented cell actively augments the rate of forward swimming and depresses active locomotion during downward orientation. A brief outline of the gravikinesis hypothesis is given on a quantitative basis and experimental data are presented which have confirmed the major assumptions.  相似文献   

8.
Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.  相似文献   

9.
Gravitactic orientation in the flagellate Euglena gracilis is mediated by an active physiological receptor rather than a passive alignment of the cells. During a recent space flight on the American shuttle Columbia the cells were subjected to different accelerations between 0 and 1.5 x g and tracked by computerized real-time image analysis. The dependence of orientation on acceleration followed a sigmoidal curve with a threshold at < or = 0.16 x g and a saturation at about 0.32 x g. No adaptation of the cells to the conditions of weightlessness was observed over the duration of the space mission (12 days). Under terrestrial conditions graviorientation was eliminated when the cells were suspended in a medium the density of which (Ficoll) equaled that of the cell body (1.04 g/ml) and was reversed at higher densities indicating that the whole cytoplasm exerts a pressure on the respective lower membrane. There it probably activates stretch-sensitive calcium specific ion channels since gravitaxis can be affected by gadolinium which is a specific inhibitor of calcium transport in these structures. The sensory transduction chain could involve modulation of the membrane potential since ion channel blockers, ionophores and ATPase inhibitors impair graviperception.  相似文献   

10.
Ciliates represent suitable model systems to study the mechanisms of graviperception and signal transduction as they show clear gravity-induced behavioural responses (gravitaxis and gravikinesis). The cytoplasm seems to act as a "statolith" stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies with Stylonychia mytilus were performed, revealing the proposed changes (de- or hyperpolarization) depending on the cell's spatial orientation. The behaviour of Paramecium and Stylonychia was also analyzed during variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign, 2003). The corresponding data confirm the relaxation of the graviresponses in microgravity as well as the existence of thresholds of graviresponses, which are found to be in the range of 0.4xg (gravikinesis) and 0.6xg (gravitaxis).  相似文献   

11.
Negative gravitaxis of Paramecium almost disappeared in solutions having specific gravity about the same as that of the organisms (1.04). The taxis turned to positive in solutions of specific gravity 1.08. Using a drop shaft at the Japan Microgravity Center, Hokkaido (JAMIC) we examined how swimming behaviour in these media was modified by changing gravitational conditions before, during and after free-fall. Tracks of swimming cells recorded on videotape indicate that the swimming cells continued upward and downward shift depending on the specific gravity of the external medium under 1-g conditions and these vertical displacements disappeared immediately after the moment of launch. The effectiveness of changing gravity to induce displacement of the cells seems to depend on the orientation of the cells to gravity. These results suggest a corelation between vertical displacement of the cell through the medium and a gravitactic mechanism in Paramecium.  相似文献   

12.
The swimming behaviour of Paramecium is affected by media of various specific gravities. At 1g, the negative gravitaxis of Paramecium virtually disappears in solutions the specific gravity of which is about the same as that of the organism (1.04). In solutions with a higher specific gravity (1.08), Paramecium becomes positively gravitactic. We recorded the swimming tracks of Paramecium in these media on videotape before, during and after free-falls. The records show that the density-dependent differences in the swimming behaviour disappeared immediately following the onset of the free-fall. The recorded tracks and distributions of cells in the experimental chambers were compared with computer-simulated traces and distributions based on gravitactic and gravikinetic models proposed for Paramecium. Our preliminary analysis favors a novel gravitactic mechanism involving modification of the ciliary movement The drop shaft at the Japan Microgravity Center, Hokkaido (JAMIC) was used for the free-fall experiments.  相似文献   

13.
Many (if not all) free-living cells use the gravity vector for their spatial orientation (gravitaxis). Additional responses may include gravikinesis as well as changes in morphological and physiological parameters. Though using essentially different modes of locomotion, ameboid and ciliated cells seem to rely on common fundamental graviperception mechanisms. Uniquely in the ciliate family Loxodidae a specialized intracellular gravireceptor organelle has been developed, whereas in all other cells common cell structures seem to be responsible for gravisensing. Changes in direction or magnitude of acceleration (from 0 to 5 g) as well as experiments in density-adjusted media strongly indicate that either the whole cytoplasm or dense organelles like nuclei act as statoliths and open directly or via cytoskeletal elements mechano-sensitive ion channels in the cell membrane. A recent spaceflight experiment (S/MM-06) demonstrated that prolonged (9 d) actual weightlessness did not affect the ability of Loxodes to respond to acceleration stimuli. However, prolonged cooling (> or = l4 d, 4-10 degrees C) destroyed the ability for gravitactic orientation of Paramecium. This may reflect a profound effect either on the gravireceptor itself or on the gravity-signal processing. In gravity signalling the ubiquitous second messenger cAMP may be involved in acceleration-stimulus transduction.  相似文献   

14.
板式表面张力贮箱内推进剂重定位对确定推进剂分布情况、研究晃动影响、提高控制精度等具有重要意义.为研究板式贮箱内推进剂重定位的规律,对微重力下板式贮箱内液体重定位问题进行数值仿真.计算时使用三维非定常两相流动流体(VOF)模型,对某一板式贮箱寿命末期在不同微重力加速度情况下各种重定位过程进行数值仿真,得到各种工况下重定位的全过程,以及定位后推进剂的分布情况.数值仿真结果为板式贮箱的设计提供有利依据.  相似文献   

15.
Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules.  相似文献   

16.
The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34 +/- 4 Gy (gamma-rays) and 13 +/- 1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6 +/- 0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.  相似文献   

17.
A new model explaining the gravitactic behavior of Paramecium is derived on the basis of its mechanism of gravity sensing. Paramecium is know to have depolarizing mechanoreceptor ion channels in the anterior and hyperpolarizing channels in the posterior of the cell. This arrangement may lead to bidirectional changes of the membrane potential due to the selective deformation of the anterior and posterior cell membrane responding to the orientation of the cell with respect to the gravity vector; i.e., negative- and positive-going shifts of the potential due to the upward and downward orientation, respectively. The orientation dependent changes in membrane potential, in combination with the close coupling between the membrane potential and ciliary locomotor activity, may allow the changes in swimming direction along the otherwise simple helical swimming path in the following manner: an upward shift of the axis of helical swimming occurs by decreasing the pitch angle due to channel-dependent hyperpolarization in upward-orienting cells, and an upward shift of the swimming helix occurs by increasing the cell's pitch angle due to depolarization in downward-orienting cells. Computer simulation of the model demonstrated that the cell can swim upward along the "super-helical" trajectory consisting of a small helix winding helically along an axis parallel to the gravity vector.  相似文献   

18.
Sensitivity of Paramecium to mechanical stress including gravitational force is organized along two opposing gradients of membrane channel distribution: depolarizing Ca channels and hyperpolarizing K channels. Mechanoreceptor channels reside in the membrane of the cell soma and are activated, when the weight of the cytoplasm deforms the "lower" plasma membrane. Channel distribution is such as to generate ciliary activation which can counteract sedimentation of the cells: a reduction in downward swimming rate and an augmentation in upward swimming rate. Application of weak DC fields does not only induce the well-known cathodal orientation and swimming of Paramecium toward the cathode (galvano-taxis). We document that swimming velocity is augmented up to 175% as a function of the voltage gradient between 0.3 V/cm and 0.8 V/cm (galvanokinesis). A gradient of 0.3 V/cm was highly effective in raising the common negative gravikinesis of downward swimmers threefold. The gravikinesis of upward swimmers reversed polarity under field stimulation inducing cells to augment sedimentation effects (positive gravikinesis). Both effects of electric-field stimulation on ciliary activation are of the depolarizing type: reduction in the frequency of normally beating cilia. Analysis of the data shows that a voltage-sensitivity of gravireceptor channels would not account for the observed potentiation of negative gravikinesis. It is suggested that a previously described voltage-dependent Ca channel of the soma membrane interferes with a Ca(2+)-sensitive, peripheral filament system, which directly connects to gravireceptor channels.  相似文献   

19.
为提高两相涡街湿气测量精度,针对传统涡街过读公式预测精度差、适用范围受限问题,提出基于夹带液滴参数(夹带率和粒径)的涡街过读预测模型。为进行不同夹带液滴工况的实验研究,建立基于雾化混合的可调压环雾状流实验装置,并建立光学图像法测量系统,获得液滴直径及其分布信息。结合环雾状流型及涡街过读机制,考虑液滴-液膜传质和液滴-旋涡耦合作用,提出影响涡街过读的无量纲尺度参数。建立基于液相加载量、韦伯数和斯托克斯数的涡街过读预测模型,将夹带液滴参数和载气参数(密度和速度)的影响考虑在内,理论上可拓展公式适用范围。最后,评估现有过读关联式的预测性能,并结合实验和模型假设中夹带液滴参数的差异进行详细分析,进一步确认了夹带率和粒径对涡街过读特性的重要影响。结果表明:所提模型在不同液滴夹带条件下都给出了很好的预测,相对偏差在±1.0%以内,预测精度和可拓展性较其他公式有了较大提高。  相似文献   

20.
平流层飞艇太阳能源系统研究   总被引:3,自引:0,他引:3  
以平流层太阳能飞艇平台为背景,对平流层太阳能飞艇能源系统展开了分析和研究。文中建立了飞艇表面太阳能电池接收太阳直接辐射、散射辐射、反射辐射的模型。利用该模型对某飞艇太阳能电池进行计算,结果显示飞艇接收的太阳辐射能量与飞艇的工作纬度、季节、太阳能电池阵列表面面积、飞行姿态密切相关。当飞艇的脊背从日出到日落时刻正对太阳光线时,太阳能电池接收到的太阳辐射能量将是最大的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号