首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of what we know about galactic X-ray binaries comes from their time variation, particularly periodic variations corresponding to neutron star rotation, and binary motion. Longer cycles or quasi-cycles are much harder to observe because of the shortage of instrumentation suitable for long-term monitoring. Nonetheless, cycle with periods up to a few years have been seen in several galactic binaries.Cycles of 30–300 days have been confirmed for four high-mass systems, LMC X-4, Her X-1, SS433, and Cyg X-1, and are suspected in several others. These cycles are observed in both the X-ray and optical bands, and represent cyclic variations in both the inner and outer parts of the accretion disk. Some component of these systems is precessing, but we are not certain which. It could be a misaligned companion star; the outer rim of the accretion disk, driven by radiative feedback; or the neutron star.Several low-mass X-ray binaries have quasi-periodic cycles, with periods ranging from 1/2 to 2 years. The amplitude of modulation ranges between 50 and 100%, i.e., both persistent and transient objects fall into this class. This activity is reminiscent of the superoutburst cycles of the SU UMa cataclysmic variables, and may be caused by similar mass-transfer instabilities.Periodic outbursts in the Be/neutron star systems seem to result from variable mass transfer in a wide, eccentric orbit. The relationship between the orbital cycle and the flux outbursts, however, is not well understood, and even the equivalence of the outburst and binary cycles remains hypothetical for most objects. Most likely, the periodic outbursts result from enhanced mass transfer at periastron.Compared to other aspects of X-ray astronomy, long-term activity has been much less intensively studied by both observers and theoreticians. A simple all-sky monitor in permanent operation could provide for the X-ray sky the same kind of data base provided to optical observers by the Harvard plates.  相似文献   

2.
EXOSAT observed LMC X-4 on November 17/19, 1983 for one 1.4 day binary period during the high state of the 30.5 day cycle. An eclipse with sharp ingress and slow egress was detected with an eclipse angle of 27.1±1.0 dgr. In the medium energy experiment the source showed a hard power law spectrum. Outside eclipse the source was remarkably constant and only one flare was detected on November 17 at 19 UT lasting for about 1 h. The energy spectrum of the source softens considerably during that time and shows an emission line of cold iron. 13.5 sec pulsations are strongly present during the flare and have also been detected during the quiescent period and during several 1 min flares in another EXOSAT LMC X-4 observation on November 22, 1983. A pulse delay time analysis results in the determination of the pulse period (13.5019±0.0002) s and of the semimajor axis of the orbit of the X-ray star (26.0±0.6) It-sec. These results, together with other available information on LMC X-4, allowed to improve the binary parameters. The mass of the neutron star is found to be 1.34 ±0.44 0.48 Mo (95% confidence errors).  相似文献   

3.
The strongest X-ray point source, LHG 83, discovered in the EINSTEIN survey of the LMC and not being associated with a nearby coronal type stellar emitter or background AGN is identified with a faint blue variable object. Spectrophotometry reveals low mass X-ray binary characteristics at a mean velocity consistent with LMC membership. The He II 4686 emission exhibits a unique blue shifted component suggesting outflow velocities of several thousand km/s. Optical brightness changes by 0.3 mag in less than one hour are likely to be intrinsic to the source rather than induced by orbital motion. The low X-ray to optical flux ratio is probably due to the fact that the central X-ray source is blocked from direct view by the accretion disk.Based on observations obtained at ESO, La Silla, Chile  相似文献   

4.
Stellar coronae were among the first predicted X-ray sources. Because of their relatively low X-ray luminosities, however, they have been discovered only during the last few years.In the present paper the current state of stellar coronal X- and UV observations has been reviewed, including some preliminary observational results from the HEAO-1 and IUE satellites, but still without any result from the recently launched X-ray satellite HEAO-2.Late 1978 about two dozens of stellar soft X-ray sources have been detected, e.g., normal stars like the Sun (e.g., Cen), very active stars (RS CVn systems), and possibly a corona around an intermediately hot white dwarf (Sirius B).The observational results of various objects have been discussed and compared with X-ray luminosity predictions based on minimum-flux coronal models.  相似文献   

5.
The imaging capabilities of the Exosat and Einstein satellites at soft X-ray wavelengths have begun to show that suitable Galactic X-ray sources have extended ( 10 arcmin) haloes due to scattering of soft X-rays by interstellar dust. A simple argument suggests that similar haloes, due to scattering by intergalactic dust, should exist around distant (z 1) quasars and detailed analysis confirms this conclusion. A search for such haloes around suitable X-ray quasars could provide valuable, model-independent, constraints on the amount and origin of intergalactic dust.  相似文献   

6.
ESO 3.6m Caspec spectra of the LMC luminous blue variable (LBV) taken at minimum have been analysed using NLTE model atmospheres and line formation calculations to derive atmospheric parameters and chemical composition. Using the silicon ionization balance and the hydrogen Balmer lines we deriveT eff =17250, log g=1.80 and a microturbulent velocity of 15–20 km/s. The analysis yields abundance ratios by number of approximately 0.43 for He/H, 0.03 for C/N and 0.14 for O/N, implying that enrichment of the atmosphere by processed material has taken place. We have re-evaluated the reddening of R71 using IUE low resolution data and published UBVRIJHKL photometry and derive a value for A V of 0.63. We also construct an extinction curve using archive IUE data for mid-B LMC supergiants and show that the extinction is anomalous; the 2175A bump being almost absent and the far UV rise very pronounced. A comparison of our model flux in theV-band with the observed (dereddened)V magnitude and the D.M. of the LMC (18.45), implies that the bolometric magnitude or R71 is –9.9. This is significantly higher than the value of –9.0 usually adopted for R71 and suggests that this object may not in fact be a subluminous LBV.  相似文献   

7.
The present knowledge of the structure of low-mass X-ray binary systems is reviewed. We examine the orbital period distribution of these sources and discuss how the orbital periods are measured. There is substantial observational evidence that the accretion disks in low-mass X-ray binaries are thick and structured. In a number of highly inclined systems, the compact X-ray emitting star is hidden from direct view by the disk and X-radiation is observed from these only because photons are scattered into the line of sight by material above and below the disk plane. In such systems the X-ray emission can appear extended with respect to the companion star, which can lead to partial X-ray eclipses. There are substantial variations in the thickness of the disk rim with azimuth. These give rise to the phenomenon of irregular dips in the X-ray flux which recur with the orbital period, or to an overall binary modulation of the X-ray flux if the source is extended. The X-ray spectra of low-mass X-ray binaries can be used to probe the innermost emission regions surrounding the compact star. The spectra of the bright Sco X-1 variables can be fitted with two components which are provisionally identified as originating in the inner disk and the boundary layer between the disk and the neutron star respectively. The characteristic energy dependent flaring of the Sco X-1 sub-class may be a geometric effect triggered by an increase in the thickness of the inner disk or boundary layer. The X-ray spectra of the lower luminosity systems, including the bursters, are less complex, and in many cases can be represented by a single power law with, in some sources, a high energy cut-off. Iron line emission is a characteristic of most low-mass X-ray binaries, irrespective of luminosity.  相似文献   

8.
Summary On May 8, 1980, we conducted a 90 minute observation on hard X-ray emission (15-200 keV) from Her X-1, using a large area ( 1500 cm2), low background balloon borne X-ray telescope. The energy resolution of the telescope was 17% FWHM at 60 keV. Her X-1 was at binary phase 0.0725 and 2.7 ± 0.5 days after turn on in the 35 day cycle.Average pulsation light curves were obtained by sorting data into 25 equal bins, according to pulse arrival time, modulo the 1.24 sec pulsation period. The width of the main pulse is energy dependent and in the 45–75 keV region about 30% smaller than in the range from 15 to 30 keV.The data have been analyzed by taking the Her X-1 pulse minus background spectrum, where the pulse count rate is defined in a pulse phase interval around the pulse maximum of the 1.24 sec period. The background spectrum was intermittently obtained by a chopping collimator system.A spectral feature is present in emission at an energy of 49.5 (+ 1.5, -3) keV and a FWHM of 18 (+ 6, -3) keV and in absorption at an energy of 29.5 (+ 1.7, -1.5) keV and a FWHM of 17.0 (+ 2.6, -2.8) keV. The intensity of this line feature in emission is (1.8 ± 0.4) photons/cm sec. The line excess in emission over the continuum (with kT = 6.75 (+ 0.2, -0.4) keV) is 7.  相似文献   

9.
Modulation collimators have been used in recently reported work to determine the angular sizes and celestial positions of the X-ray sources Sco X-1 and Taurus XR-1 (Crab Nebula) with precisions of 15 to 30. The measurements were made by means of four-grid collimators, star photography and optical imaging of the collimators. In the present paper we discuss (1) the principles and uses of various forms of the modulation collimators as they pertain to X-ray astronomy, (2) several methods for determining the celestial positions of X-ray sources with these collimators, (3) the techniques for the alignment and calibration of these detection systems, (4) an image-forming collimator, and finally, (5) some of the optical properties of these grid systems. The modulation collimator is quite versatile and is particularly suited for measurements from spacecraft with relatively poor pointing capability. Thus it should be a useful tool in X-ray astronomy for some years to come.This work was supported in part by the National Aeronautics and Space Administration under contracts NASw-1284 and NASw-1535 and grant NSG-386 and in part by the United States Atomic Energy Commission under contract AT (30-1)2098. In addition, certain portions were carried out at California Institute of Technology under National Aeronautics and Space Administration grant NSG-426 and at the Institute of Space and Aeronautical Sciences, Tokyo.  相似文献   

10.
We present optical spectroscopy and photometry and IUE spectroscopy of the counterpart of the LMC recurrent X-ray transient A0538-66 during an outburst at the end of December 1980 which was consistent with the 16.6 day X-ray period (Skinner, 1980). The optical spectra show steadily increasing Balmer and HeI emission (indicative of a shell phase) superposed on a B2 IV spectrum with a substantial brightness increase of 2m and the sharp turn-on of HeII 686 at the peak. Significant radial velocity changes have been detected but they show no correlation with the 16.6 day period. IUE spectra during a subsequent outburst show very strong and broad (5000 km s–1) emission from C IV 1550 and HeII 1640. This behaviour is compared with other galactic transients and shell/Be stars.  相似文献   

11.
Temporal and spectral characteristics of solar hard X-ray bursts are briefly reviewed. The merits of non-thermal and thermal flare models are discussed. The validity of these models may be checked by future measurements of X-ray polarization. Finally, some important results of recent satellite experiments are described providing information on the spatial distribution of hard X-ray sources: the multi-spacecraft observation of X-ray bursts and the imaging of X-ray sources by means of the HXIS instrument.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

12.
A highly variable point X-ray source, first seen by the Einstein IPC, has been positioned with the EXOSAT CMA and identified with a bright (V = 8.5) K0 star. Although in the direction of the southern half of the Cygnus Loop, this star is almost certainly a foreground object and typical of other active cool stars that are related to RS CVn systems.An EXOSAT program to study T Tauri stars failed to detect T Tau itself. However, a strong X-ray source was observed 15 from T Tau, which in its turn had not been seen by Einstein. This new source has been identified with a hitherto unstudied 13 mag star which is likely to be a dMe flare star.The young star cluster NGC 2264 was observed with the EXOSAT CMA in an attempt to identify the sources found during an Einstein IPC study of S Mon. Apart from S Mon itself, only UV-bright objects were seen, but several of these are considered likely counterparts of the Einstein sources.  相似文献   

13.
We present the results of the spectral and timing analysis of an observation of GX9+1/4U1758-205 performed with the Medium Energy Experiment aboard EXOSAT. During our observation the source flux varied irregularly in time scales from minutes to hours. No periodic emission in the period range from 16 msec to 2000 sec was found with an upper limit of around 1% (3 ) for the pulsed fraction. The hardness ratio shows a correlated change with the flux intensity (Sco X-1 behaviour). The spectrum could be fitted by a double component model, a black body component (kT=1.16–1.26 keV) together with a thermal bremsstrahlung law (kT=13–15keV). The black-body temperature-black-body flux relation follows a Stefan Boltzmann law with RBB=15.3 km*D/10 kpc. No iron line was detected. The upper limit for the line equivalent width of a 6.7 keV iron emission line is 40 eV (1). The X-ray spectral behaviour of GX9+1 indicates, that this source belongs to the class of Low-Mass X-ray Binaries (LMXB).  相似文献   

14.
SummaryA. Spectral features The ability of the various theories to explain the three main spectral features at 1/4 keV, 60 keV and 1 MeV is summarized in Tables II and III.Clearly, confirmation of the reality of these features, especially the soft X-ray and -ray excesses, is one of the key elements in enabling us to decide between the competing theoretical interpretations.B. Energy requirements None of the proposed interpretations are easily explained in terms of the available energy in cosmic rays (except perhaps the Seyfert galaxy proposal, and this runs into difficulties). It seems that one either has to regard normal galaxies at the present epoch as prolific sources of cosmic rays ( 1060 erg/galaxy in protons), as is required by the Brecher-Morrison model, or to argue that at early stages in their evolution far more energy is available than at present. One ends up with much the same energy requirement in this approach.One could conceivably identify such an early phase with the radio galaxy or QSO phenomena: in any event, cosmological evolution plays a major role. Cosmology does ease the energy requirements, but only for the inefficient mechanisms, such as nonthermal bremsstrahlung or ° -production.It seems that one still needs the metagalactic cosmic ray flux to be 10-2 of the galactic flux in the diffuse inverse Compton models, and 10-2–10-4 in the nonthermal bremsstrahlung models.Faced with problems of energetics, one is tempted to turn to the most energetic objects in the Universe, namely Seyfert nuclei and QSO's, to provide the basic energy source, whether directly or indirectly, for the diffuse X-ray background. A direct connection could be more readily investigated when X-ray observations are available of more extra-galactic sources.C. Angular variations Another approach, complementary to that of looking for remote discrete sources, is to seek angular fluctuations, or limits on such fluctuations in the diffuse X-ray background.The best results presently available are those from the X-ray experiment on board OSO 3. Schwartz (1970) reports a limit of I/Ifour percent on small-scale (10°) fluctuations over 10–100 keV over about one-quarter of the sky. If one assumes a astrophysics, namely the origin of cosmic rays, is intimately linked to the origin of the X-ray background.It may well be that no single mechanism suffices to account for the entire spectrum of isotropic X- and -radiation. Nature is sufficiently perverse for there to be a reasonable probability that several different processes are contributing, and considerable ingenuity will be required to ascertain which mechanism, if any, is assigned the dominant role in a given spectral region.This review is based on an invited paper presented at the joint meeting of the A. A. S. Division of High Energy Astrophysics, and the A. P. S. Division of Cosmic Physics, Washington, D. C., 28 April–1 May, 1970  相似文献   

15.
A model for production of episodic -ray event at interaction of a moving gas target with, a beam of relativistic particles is proposed. The typical duration of -ray emission is limited by the flight time of the target across the beam as well as by the time of destruction and/or expulsion of the target by luminous beam. The time-dependent radiation spectra of the expanding and moving gas cloud irradiated by the beam are calculated for the galactic binary systems Her X-1 and AE Aquarii which are reported as episodic -ray emitters at very high energies. Some predictions and observational tests for the model are discussed.On leave from Yerevan Physics Institute, Armenia  相似文献   

16.
Although General Relativity had provided the physical basis of black holes, evidence for their existence had to await the Space Era when X-ray observations first directed the attention of astronomers to the unusual binary stars Cygnus X-1 and A0620-00. Subsequently, a number of faint Ariel 5 and Uhuru X-ray sources, mainly at high Galactic latitude, were found to lie close to bright Seyfert galaxies, suggesting the nuclear activity in AGN might also be driven by accretion in the strong gravity of a black hole. Detection of rapid X-ray variability with EXOSAT later confirmed that the accreting object in an AGN is almost certainly a supermassive black hole.  相似文献   

17.
We present the first results of an EXOSAT observation of the low-mass X-ray burster 4U1735-44. The ME data show low-amplitude variations in the persistent flux including two 5% dips separated by 4 hours. The structure of the single observed burst is briefly described. Five hours of simultaneous B-band photometry were obtained at SAAO with 12 minute time resolution; a strong anti-correlation is shown to exist between the X-ray and optical flux, with a high level of significance. A model for this behaviour is suggested, based on reprocessing of the X-ray flux in a corona or stellar wind.  相似文献   

18.
We present a 6.3 hour observation of 4U1624-49 with the EXOSAT Medium Energy experiment. The X-ray light curve is dominated by a series of sharp dips in which the observed flux falls to 25% of the steady level on timescales of seconds. These dips are accompanied by strong variations in the spectral hardness consistent with large changes in the absorbing column density. No evidence is found for any dip periodicity, in contrast to the other four sources in which dip activity has been reported. We discuss the implications of these observations for models of low mass X-ray binaries.  相似文献   

19.
Highlights of the results obtained with Japanese X-ray astronomy satellite Hakucho are reviewed. After a brief account of instrumentation (Section 2), some new features of non-bursting, non-pulsating objects are presented (Sections 3–5). The main part of the present review is devoted for X-ray bursts which are found more complex than one might have thought (Sections 6–11). The observation of X-ray pulsar, including a change of spin rate of Vela X-1, is described (Section 12). The main results obtained in the first two years are summarized in Section 13.  相似文献   

20.
We report Ariel V(SSI) observations of three X-ray pulsars A0535+26, 2S1145-619 and GX301-2 (2S1223-624). These sources exhibit X-ray outbursts which appear, on the basis of observations extending over 5 years, to have recurrence periods of 110 days, 187.5 days and 41.4 days respectively. If these periods are orbital in origin, the observed X-ray modulation may be explained in terms of an appreciable orbital eccentricity giving rise to time variable accretion. (In the case of GX301-2 published pulse timing data already provide independent evidence for a 41.4 day orbital period and an eccentricity e 0.4). The optical counterparts are all early-type stars; A0535+26 and 2S1145-619 are identified with Be main sequence stars and GX301-2 with a B2 supergiant which also shows an emission line spectrum. The implications of the observations in relation to possible mass transfer mechanisms in such systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号