首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>先进制造技术是高性能航空发动机研制的基础,对于保证发动机的性能和可靠性至关重要,也是降低发动机制造成本和提高其市场竞争力的有效手段。轻量化和整体化结构件制造技术、新型结构件精密制坯技术等新技术的应用,必将推动中国航空发动机产业不断进步。  相似文献   

2.
以当前航空发动机制造现状为研究对象,简要概述电解加工、数控加工、精密锻造及超塑性成形等叶片主流加工工艺及其制造关键性技术,并引出发动机叶片制造过程的测量手段。阐述三坐标测量过程中叶片坐标定位、测量轨迹规划及点云降噪的实现方法;简要分析了激光测头安装精度、激光投射角度、测量景深等对激光扫描法测量精度的影响。对航空叶片精密制造工艺及与之相适应的高效精密检测技术快速发展具有一定指导意义。  相似文献   

3.
针对新一代航空发动机制造成本及可靠性要求,电解加工技术在航空发动机整体薄壁结构制造上具有其他制造技术不可比拟的效率与完整性优势。重点论述国内现有薄壁结构复杂表面制造的几种加工技术,航空发动机整体薄壁结构复杂表面电解加工技术的国内外现状,整体薄壁结构复杂表面电解加工技术的最新研究进展以及今后需要解决的问题和应用前景。  相似文献   

4.
高性能航空发动机制造技术及其发展趋势   总被引:5,自引:0,他引:5  
高性能航空发动机关键制造技术目前正向轻量化、整体化结构件制造、新型结构件精密制坯、发动机制造技术新工艺、面向零件的专业化生产线以及信息技术与制造技术相结合的方向发展  相似文献   

5.
航空增材制造复杂结构件表面光整加工技术研究及进展   总被引:1,自引:0,他引:1  
增材制造是解决航空复杂结构件制造难题的有效方法。首先概述了增材制造技术原理、特点及其在航空领域的应用,并深入评述了增材制造技术在材料力学性能、表面质量等方面面临的挑战,指出增减材复合制造的方法,并表明先进表面光整加工技术是提升航空增材制造复杂结构件表面质量和精度的有效途径。重点阐述了高加工可达性的磨粒流加工技术在航空复杂结构件精密抛光中的优势,并总结了保持零件精度同时改善表面质量需要重点研究的内容。  相似文献   

6.
航空制造技术发展趋势   总被引:3,自引:0,他引:3  
本文针对国外先进航空产品发展需求,对航空产品研制及生产中所应用的数字化设计/制造技术、复合材料构件制造技术、大型结构件数字加工/成形技术、高温复杂结构件制造技术、先进连接与装配技术、超精密加工及微系统制造技术、特种加工技术、表面工程技术以及无损检测技术的发展趋势进行了分析和总结。  相似文献   

7.
航空发动机精锻叶片自适应数控加工技术集成了数字化检测、工件定位和模型重构等数字化制造领域中的多项技术,是实现以精锻叶片为代表的复合制造工艺背景下叶片类零件高效精密加工的一种系统解决方案。该技术的研究与应用对于改善我国航空发动机精锻叶片制造领域现状,提升先进制造技术水平具有重要意义。  相似文献   

8.
近年来,国内相关行业突破了整体叶盘制造过程中的高效开槽工艺、无干涉刀位计算和精密加工变形控制等关键技术,实现了整体叶盘高效精密加工。整体叶盘是新一代航空发动机实现结构创新与技术跨越的核心部件,它的应用是提高发动机性能、简  相似文献   

9.
以新材料、新工艺为特色的高性能航空发动机叶片精密高效加工技术,能够极大推进新型大涵道比商用航空发动机的效率提升、寿命延长和可靠性增强。从新型叶片材料的属性、加工方法及加工误差的形成原理等几个方面突破高性能航空发动机叶片精密高效加工的技术难点,是当前航空发动机叶片先进制造技术的重要发展趋势。  相似文献   

10.
为了寻求航空精密微细制造新技术并实现绿色制造和精密微细制造,对一种新型微细电解加工方法——纯水微细电解加工进行了研究。基于水解离机理,在新研制的试验装置上,采用不同的试验条件,进行了一系列工艺试验,探索并揭示了实现纯水微细电解加工的必要工艺条件和工艺规律,加工了圆孔和字母"PW-ECM";还研究了超声振动—纯水电解复合加工新方法,进而在不锈钢薄片上加工出三角、方形盲孔、三角通孔;试验研究结果证明了纯水微细电解加工的可行性。  相似文献   

11.
珩磨技术凭借加工精度高、材料去除率大的优势,广泛应用于精密孔加工.航空发动机广泛采用高温合金、钛合金、不锈钢等航空难加工材料,其难加工性降低了珩磨加工的材料去除及误差修正能力,限制了珩磨工艺在航空发动机精密孔加工中的进一步应用.为突破难加工材料珩磨工艺瓶颈,对难加工材料珩磨工艺特性进行分析,并以高效精密珩磨工艺及工具为切入点,归纳了航空难加工材料精密孔高效珩磨技术现状,并对其发展趋势进行了预测.  相似文献   

12.
随着航空航天装备更加注重追求轻质、高效和高可靠性,设计中越来越多地采用复杂整体结构件和精密复杂结构件.由于单个结构件的尺寸和复杂性不断增加,对结构件加工制造要求日趋苛刻.同时,航空航天用钛合金等材料具有高熔点、难变形和难加工等特点,使得复杂整体结构件和精密复杂结构件的制造尤其困难.特别是越来越多的异形结构,传统的锻造、铸造、焊接、机加等成形工艺已无法满足结构件的设计和制造要求.因此,研究开发能够解决航空航天整体复杂钛合金结构件难加工甚至无法加工问题的制造技术途径,已成为先进制造技术的重要发展方向和前沿热点课题[1-2].  相似文献   

13.
针对航空发动机结构件数控加工程编中存在的重复工作量大、效率低下、质量不稳定、经验依赖性强等问题,提出了基于特征的航空发动机结构件自动程编技术,将基于特征的数控程编技术应用到航空发动机领域。研究了航空发动机结构件特征定义、特征识别、自动工艺决策及轨迹自动生成技术,实现由零件导入到数控程序输出的自动化和规范化,有效提高航空发动机结构件数控程编的效率与质量,提升我国航空发动机研制能力。  相似文献   

14.
航空零件加工中株钻部分刀具的应用 航空航天零件的加工科技含量相当高,是先进材料和先进工艺集中的行业,航空类零件加工用刀具主要分为飞机制造企业的飞机结构件加工和航空发动机生产企业的盘环零件加工.飞机结构件的加工主要为钛合金、铝合金、不锈钢等零件的铣削;航空发动机行业主要涉及的是高温合金、钛合金的车削加工.这些零件具有难切削的工件材料、复杂的形状、高精度的尺寸和光洁度要求等特点,对加工工艺和所用刀具提出了较高的要求.目前的航空刀具领域主要还是几大欧美刀具品牌占主导地位,主要为ISCAR、KENMATAL、SANDVIK、SECO等,刀具价格居高不下,且消耗量相当大,因此各航空发动机加工企业都有降低刀具成本的强烈愿望.株洲钻石切削刀具股份公司借助公司的硬件条件和多年来在刀具的研发、制造、应用方面的经验,在2003年启动了航空刀具的研制项目,与各航空加工企业合作进行产品的研发、生产、试验和产业化,已取得了阶段性的成果.  相似文献   

15.
中航工业北京航空精密机械研究所始建于1961年,系中航工业所属的综合性应用技术研究所,是航空机载设备制造技术研究开发中心,拥有精密制造技术航空重点实验室和航空精密加工制造技术中心,主要承担航空机载设备精密制造和精密检测技术及其设备的研制和开发。研究所在精密、超精密加工技术与设备,惯导测试与运动仿真技术与设备,数控三坐标测量机技术与设备,精密检测技术与设备,环境试验技术与设  相似文献   

16.
柔性自动化加工已经成为航空制造未来的发展方向。航空结构件属于多品种小批量生产模式,难以通过迭代优化获取稳定高效的加工工艺,为确保柔性生产线的正常运转,必须攻克柔性线加工工艺支撑技术。围绕柔性线加工模式对工艺技术的需求,从柔性线加工工艺标准化、加工过程质量控制及监控指令构建等方面开展系统研究,形成面向航空结构件的柔性线自动化加工成套工艺技术,有力地支撑了柔性线加工模式下,航空结构件的高效稳定加工。  相似文献   

17.
埃马克推出的多轴联动数控精密电解机床已被航空发动机制造商用来加工高温合金、钛合金、钛铝合金的发动机主要部件,为诸如整体叶盘、单个叶片、扩压器以及涡轮叶盘的燕尾槽等复杂3D曲面工件加工提供了最佳工艺解决方案。  相似文献   

18.
高速切削具有高效、高精度、能切削高硬材料、工件表面质量高等一系列优点,是解决航空发动机叶片模具制造的有效手段。迄今,高速切削技术在航空制造业、汽车制造业、模具工业中应用最为广泛并最为成功。在航空制造业的应用,主要集中在飞机整体结构件和航空发动机高硬合金零件(主要为叶片)的高速切削上,而有关航空发动机压气机叶片和涡轮叶片模具的高速铣削技术和工艺,关注者不多。  相似文献   

19.
技术述评 用于电解加工的3000A斩波器 6—33发展航空制造技术振兴航空工业1—Zis加工、表面处理工艺飞机金属胶接技术现状及展望1—6 利用焊接过程参数的焊缝跟踪系统航空工艺检测述评1—26—一卷边接头的焊缝跟踪系统1—19对飞机工厂改造的想法2一二 飞机主机制造厂热处理技术改造浅航空零件加工的表面完整性2—31 析 二一24微机在制造技术中的应用前景2—38 LDI。合金的液态模锻2—8栽国飞机板金成形技术发展的展望2—40 粉末冶金超合金的制造和应用2.12惯性仪表制造中的精密加工和超精NDZ-1—,—一,-$1y@。’””二——…  相似文献   

20.
电解加工在欧美航空发动机叶片或整体叶盘等核心部件的高效、精密制造中起到了重要作用。传统叶片电解加工模式中,叶盆工具电极和叶背工具电极相向运动,同时加工出叶型和进排气边轮廓,此时叶型精度易保证而进排气边精度低。提出了叶片脉动分步精密电解加工方法,旨在进一步提高叶身型面精度的同时提升进排气边轮廓精度。叶片电解加工分为两个不同的阶段,首先通过脉动态变参数模式进行叶身型面精密电解加工,其次利用微量脉冲电解模式进行进排气边的切向电解加工。阐述了脉动态变参数加工方法和进排气边微量脉冲切向加工方法在成型机理和工艺试验等方面的研究,并针对传统径向流场中存在被动分流的问题,提出了主动分流式径向流场。试验结果表明,提出的精密电解加工方法表现出很好的工艺效果,叶盆型面和叶背型面的轮廓度加工误差分别为–0.013~0.025 mm和–0.003~0.030 mm,进气边轮廓度加工误差为–0.034~0.041 mm,排气边轮廓度加工误差为–0.038~0.034 mm,叶盆型面和叶背型面的表面粗糙度分别为Ra0.333μm和Ra0.287μm。提出的方法为实现航空发...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号