首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of temporal profiles of low-energy ion intensity and magnetic field magnitude in different periods of solar activity in the outer heliosphere is carried out using the data of the Voyager 1 and Voyager 2 spacecraft. It is shown that temporal, spectral, and statistical characteristics of particle fluxes and magnetic field in the heliospheric regions before and after the terminal shock in 2002–2008 had similar dynamics in different hemispheres. This similarity allowed one to assume that, in the region of the inner heliospheric boundary, a quasistable spatial structure existed moving together with the terminal shock in accordance with the solar wind pressure, as well as, probably, under the action of the interstellar medium. It was revealed that the spatial dimensions of most details of this structure are less on Voyager 2, which, probably, is due to variation of the solar activity level, difference in latitude of spacecraft disposition, and also the influence of the interstellar magnetic field.  相似文献   

2.
A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.  相似文献   

3.
Equatorial radial distributions of plasma density in the 3 < L < 9 region of Saturn’s magnetosphere, obtained from measurements on the Cassini spacecraft, are considered on the basis of diffusion theory. The concentration of particles in the magnetic tubes is found to grow with L. The external source is located at L ? 9. The particles diffuse to Saturn. In the 5 < L < 9 interval the distribution is close to equilibrium. A relation between the diffusion coefficient and the densities of internal sources and losses is obtained in this interval. Prevalence of losses over sources is very probable. Estimates of the diffusion flux and its derivative are given. If the diffusion coefficient is expressed as D LL = D o L 3 and the contencentration of particles depends on L according to a power law, the diffusion rate is constant.  相似文献   

4.
The technological advances of the Space Age have enabled us to project our senses through complex instruments to the edge of the Solar System and beyond. The link back to Earth by the communication channel has provided us with a wealth of information. The vast improvement in communication capability, by a factor of 1018, from the launching of the first earth satellites to the capacity of the Voyager telecommunications link across the Solar System, is symbolic of both our technical prowess and our cultural development. The combination of data rate and extreme distance at the Voyager 2 encounters with Uranus and Neptune in 1986 and 1989 will require the ground network to perform an engineering feat of unequalled magnitude. This paper describes the engineering challenge of communicating with spacecraft at the limits of the Solar System and the engineering responses to that challenge.  相似文献   

5.
A method for determination of the vibrational distributions and populations of individual vibrational levels of vibrationally-nonequilibrated carbon dioxide in bend-stretch manifold and asymmetric stretching mode was developed and substantiated. The method is based on the measurements of integrated radiation intensity in the wide spectral intervals of the 15 μm CO2 band and total emissivities of its appropriate Q-branches. Computations of radiation intensities and emissivities in P and R-branches were performed by using vibrational-rotational band models and in Q-branches by the direct “line-by-line” integration.It was shown that vibrational temperature of CO2 asymmetric stretching mode may be determined from the measurements of integrated radiation intensity of the 15 μm band. The populations of individual levels of the bend-stretch manifold may be obtained from the measurements of total emissivities of some Q-branches of the 15 μm band.The procedure of the CO2 lower vibrational levels populations determination under the conditions typical of 18 μm and 9–11 μm CO2 laser cavities is described.  相似文献   

6.
Variations in fluxes of quasi-trapped energetic protons were studied on the basis of the data of the CORONAS-I satellite. These variations are characterized by an increase in the proton fluxes with E P ≥ 1 MeV both in the vicinity of the geomagnetic equator and in the high-latitude region of the magnetosphere. The analysis of structural features of the proton distributions in the regions at L ~ 1–1.1; 3 < L < 4; and L > 4, was performed and made it possible to detect reliably the type of the proton flux increase in this region. The mechanisms of particle scattering leading to the precipitation of energetic protons under conditions of various types of geomagnetic disturbances are considered.  相似文献   

7.
For estimating radiation risk in space flights it is necessary to determine radiation dose obtained by critical organs of a human body. For this purpose the experiments with human body models are carried out onboard spacecraft. These models represent phantoms equipped with passive and active radiation detectors which measure dose distributions at places of location of critical organs. The dosimetric Liulin-5 telescope is manufactured with using three silicon detectors for studying radiation conditions in the spherical tissue-equivalent phantom on the Russian segment of the International space station (ISS). The purpose of the experiment with Liulin-5 instrument is to study dynamics of the dose rate and particle flux in the phantom, as well as variations of radiation conditions on the ISS over long time intervals depending on a phase of the solar activity cycle, orbital parameters, and presence of solar energetic particles. The Liulin-5 dosimeter measures simultaneously the dose rate and fluxes of charged particles at three depths in the radial channel of the phantom, as well as the linear energy transfer. The paper presents the results of measurements of dose rate and particle fluxes caused by various radiation field components on the ISS during the period from June 2007 till December 2009.  相似文献   

8.
A brief review is given of contemporary approaches to solving the problem of medium-term forecast of the velocity of quasi-stationary solar wind (SW) and of the intensity of geomagnetic disturbances caused by it. At the present time, two promising models of calculating the velocity of quasi-stationary SW at the Earth’s orbit are realized. One model is the semi-empirical model of Wang-Sheeley-Arge (WSA) which allows one to calculate the dependence V(t) of SW velocity at the Earth’s orbit using measured values of the photospheric magnetic field. This model is based on calculation of the local divergence f S of magnetic field lines. The second model is semi-empirical model by Eselevich-Fainshtein-Rudenko (EFR). It is based on calculation in a potential approximation of the area of foot points on the solar surface of open magnetic tubes (sources of fast quasistationary SW). The new Bd-technology is used in these calculations, allowing one to calculate instantaneous distributions of the magnetic field above the entire visible surface of the Sun. Using predicted V(t) profiles, one can in EFR model calculate also the intensity of geomagnetic disturbances caused by quasi-stationary SW. This intensity is expressed through the K p index. In this paper the EFR model is discussed in detail. Some examples of epignosis and real forecast of V(t) and K p (t) are discussed. A comparison of the results of applying these two models for the SW velocity forecasting is presented.  相似文献   

9.
We consider the results of measurements of density and temperature of cold plasma in the dayside sector of the plasmasphere. The measurements were made by Interball-1 (Tail Probe) in November 1995, by Interball-2 (Auroral Probe) in August 1996 (the periods close to the solar cycle minimum), and by the Magion-5 satellite in June 2000 (this period is close to the solar cycle maximum). It was shown by the measurements in the dayside sector of the plasmasphere that, contrary to expectations of model distributions of temperature in the plasmasphere [1, 2], under quiet geomagnetic conditions the temperature of hydrogen ions of the cold plasma filling the plasmasphere was observed to increase at altitudes 5000 km < H < 10000 km. Its altitude gradient was equal to ~0.5 deg/km, the geomagnetic latitude being variable within the limits 10° < λ < 40°. The maximum values of temperature of protons, as measured by Tail Probe and Auroral Probe deep in the plasma-sphere, were equal to ~4000–6000 K. According to the data obtained by the Magion-5 satellite in the depth of the plasmasphere, these temperatures varied within the limits 7500–8500 K. These results can be considered as some indication of a dependence of the plasmasphere thermal structure on the phase of the solar cycle. In the region 2.5 < L < 5 and at geomagnetic latitudes λ < 40°, drops of the ion temperature were regularly observed with values reaching ~2000 K.  相似文献   

10.
A CFD study on drag reduction in supersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position and surface pressure distributions are obtained and validated with experiments. From the analysis on the physical mechanism of drag reduction, it shows the phenomenon that, when the opposing jet blows, the high pressure region is located between the bow shock wave and the Mach disk, which makes the nose region much lower pressure. As the pressure ratio increases, the high pressure region is gradually pushed away from the surface. Larger the total pressure ratio is, the lower of the drag coefficient is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and drag coefficient can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic force.  相似文献   

11.
12.
The energy dependence of a fraction of ring current protons of ionospheric origin is calculated using the AMPTE/CCE data for a typical strong magnetic storm (max|D st | ≈ 120 nT). It is shown that this fraction monotonically decreases from ~ 83 to 25–30% with an increase in proton energy from 5 to 315 keV at L = 6–7 (L is the McIlwain parameter) and is 30–40% at energy 40–50 keV corresponding to the maximum of proton energy density at L = 6–7. It is demonstrated that the core of the ring current (L = 3.7–4.7) was enriched by solar protons with E ≈ 10–200 keV during the active phase of the storm (the maximum effect is reached at E ≈ 20–50 keV).  相似文献   

13.
Models and methods in use for quantitative estimates of the occurrence of single event upsets in microchips of orbiting spacecraft are considered. A calculation and experimental technique for determining the rate of these effects is described, taking into account spatial and temporal distributions of the fluxes of high-energy particles in the space and their penetration through protective shields. Examples of its application for the orbit of the International Space Station are presented.  相似文献   

14.
Perturbation theory is applied to the Vinti problem—motion about an oblate spheroid—to include the gravitational effects of the sun and moon. The problem is formulated using the extended phase space method which introduces a new independent variable similar to the true anomaly. The disturbing Hamiltonian H1 for third bodies is of order J22 (second order) and the final goal is a theory including second order short and long period terms and third order secular terms. The current paper however carries the development only to the second order in the secular terms and the first order in the periodic terms. Problems of including the higher orders are discussed. Therefore, in the development of H1 all terms of order 10?9 or larger are retained. The lunar emphemeris retains terms to e2 in the lunar eccentricity. The perturbation analysis is carried out by means of Lie series and is developed through the first order only which is consistent with the final accuracy desired. The generating function W1 is obtained and separated into the long period, short period and secular terms. From W1 the coordinates are defined from the Lie series by means of a transformation equation. These coordinates are non-singular for small eccentricity and inclination. Because of the complexity of the equations all algebraic computations were accomplished by means of a computerized Poisson series manipulator developed at the Naval Research Laboratory.  相似文献   

15.
16.
Based on a new database on positions of the auroral oval boundaries including measurements made by the IMAGE satellite in 2000–2002 with correct determination of the glow boundaries, statistical estimations of the latitudinal position of the polar cap boundary (PCB) are obtained depending on the IMF B y and B z , and the PCB evolution during a magnetic storm is analyzed. At zero IMF in the noon (midnight) sector, PCB is located approximately at 80° (76°) CGMLat. The PCB displacement along the noon-midnight meridian is controlled by the IMF B z , and in the noon (midnight) sector it is equal to 0.45° (0.15°) CGMLat when B z changes by 1 nT. The PCB displacement along the dawn-dusk meridian depends on the IMF B y , and it equals 0.1° CGMLat when B y changes by 1 nT. Accordingly, the north polar cap as a whole is shifted to the dawn (dusk) side at B y > 0 (B y <0). After northward turn of the IMF during the storm’s recovery phase, the PCB on the dayside is shifted to the north practically without time delay. The night boundary requires 25 h or more in order to be shifted to the pole to a latitude corresponding to B z > 0.  相似文献   

17.
The stability of resonance oscillations and rotations of a satellite in the plane of its orbit in the case when the difference of the moments of inertia with respect to the principal axes lying in the orbit plane is small is determined at a given rotation number m by the sign of function Φm(e), introduced by F.L. Chernous’ko in 1963. In this paper, convenient analytical representations of functions Φm(e) are described in the form of integrals and series of Bessel functions regular at e → 1?. Values of Φm(1) are calculated in explicit form. A theorem about the double asymptotic form of functions Φm(e) at m → ∞ and e → 1? is proved by the saddlepoint method.  相似文献   

18.
The new approach to gravitation effect determination in calculating the flux of sporadic micrometeoroids in the near-Earth space is proposed. The technique is based on integration of the equations of motion of sporadic micrometeoroids with accounting for bending their trajectories when particles are approaching the Earth. The technique and results of calculation of the gravitational focusing factor kg for various conditions are presented. The feature of the proposed technique for calculating coefficient kg consists in the fact that this coefficient does not explicitly depend on the values of particles velocity at the last point. The results of investigation of coefficient kg have shown that, for the given initial velocity of micrometeoroids, the values of this coefficient depend on deflection of its direction from the direction to the Earth center. It is shown that for low-altitude orbits the flux density can increase up to 60%. The distribution of probabilities of various directions of particles flying to spacecraft structural elements is found to be non-uniform.  相似文献   

19.
The thermal Marangoni effect on the surface of a liquid bridge induces a convection inside the liquid. For an imposed arbitrary periodic axial circumferential temperature distribution on the liquid surface the velocity distributions in radial-, angular- and axial direction are determined theoretically by solving the linearized Navier-Stokes equations. Of particular interest is the effect of the viscosity parameter va2 and axial wave length to diameter ratio la. It was found that the increase of viscosity decreases the magnitude of the velocity distributions and that for small axial wave length to diameter ratios the radial- and axial velocities exhibit peak values close to the free surface of the liquid. This is in a less pronounced way also true for the angular velocity, which shows for increasing moderate values la(0 ≤ la ≤ 2) a strong increase in magnitude and for larger axial wavelength a decrease again. For increasing axial wavelength the peak value of the radial- and axial velocity shifts towards the center of the liquid bridge, of which for a further increase a decrease of the magnitude appears.  相似文献   

20.
Results of modeling the time behavior of the D st index at the main phase of 93 geomagnetic storms (?250 < D st ≤ ?50 nT) caused by different types of solar wind (SW) streams: magnetic clouds (MC, 10 storms), corotating interaction regions (CIR, 31 storms), the compression region before interplanetary coronal ejections (Sheath before ICME, 21 storms), and “pistons” (Ejecta, 31 storms) are presented. The “Catalog of Large-Scale Solar Wind Phenomena during 1976–2000” (ftp://ftp.iki.rssi.ru/pub/omni/) created on the basis of the OMNI database was the initial data for the analysis. The main phase of magnetic storms is approximated by a linear dependence on the main parameters of the solar wind: integral electric field sumEy, dynamic pressure P d , and fluctuation level sB in IMF. For all types of SW, the main phase of magnetic storms is better modeled by individual values of the approximation coefficients: the correlation coefficient is high and the standard deviation between the modeled and measured values of D st is low. The accuracy of the model in question is higher for storms from MC and is lower by a factor of ~2 for the storms from other types of SW. The version of the model with the approximation coefficients averaged over SW type describes worse variations of the measured D st index: the correlation coefficient is the lowest for the storms caused by MC and the highest for the Sheath- and CIR-induced storms. The model accuracy is the highest for the storms caused by Ejecta and, for the storms caused by Sheath, is a factor of ~1.42 lower. Addition of corrections for the prehistory of the development of the beginning of the main phase of the magnetic storm improves modeling parameters for all types of interplanetary sources of storms: the correlation coefficient varies within the range from r = 0.81 for the storms caused by Ejecta to r = 0.85 for the storms caused by Sheath. The highest accuracy is for the storms caused by MC. It is, by a factor of ~1.5, lower for the Sheath-induced storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号