共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
补偿模糊神经网络在机床热误差预报模型中的应用 总被引:2,自引:0,他引:2
于金 《航空精密制造技术》2004,40(5):37-39
提出了一种基于补偿模糊神经网络的数控机床热误差预报模型,讨论了该模型的详细结构、模糊规则、训练算法及相关技术问题,并给出了智能预报结果和精度评价。 相似文献
3.
给出一种智能故障诊断预报系统,论述了该系统的产生背景和特点,讨论了智能故障诊断与预报技术的意义和发展现状;并在此基础上,详细介绍了该系统的功能、组成和设计思想及系统的性能指标分析,指出了该系统的应用优势和潜力。 相似文献
4.
针对航空发动机复杂构件加工领域,智能加工技术是关键构件加工过程的重要技术保障.通过分析目前航空发动机智能加工技术中存在的问题,揭示智能加工技术的内涵、意义和特点;阐明智能加工过程中的关键技术及发展现状和进展,指出对应的科学问题和实现方法,从而为航空发动机高品质、高可靠、高效率制造提供技术支撑. 相似文献
5.
超精密车床加工精度在线测量技术研究 总被引:3,自引:0,他引:3
基于研制的亚微米超精密数控车床(已通过国家鉴定),通过误差补偿技术提高其在线测量精度.为实现该车床加工测量一体化打下基础,实验结果证明在线测量精度是令人满意的. 相似文献
6.
7.
8.
一、概述 纵切自动车床所加工的棒料夹持在机床主轴的弹簧夹头内,前端通过支撑它的中心架衬套。中心架与棒料之间有间隙Z,此间隙虽小(一般为0.02~0.05mm左右),但当其大小发生变化时,必然产生加工误差。 相似文献
9.
10.
11.
考虑加工过程的复杂薄壁件加工综合误差补偿方法 总被引:1,自引:0,他引:1
在统计分析的理论基础上,首先将数控加工过程视作以参考模型为自变量,以加工结果为因变量的过程函数;然后将整个误差补偿过程分为3个典型的加工状态,分别构造各个状态的过程函数,并以材料去除量系数为桥梁,建立复杂薄壁件加工综合误差补偿数学模型;对数学模型进行泰勒展开,计算复杂薄壁件加工过程中的误差补偿量,重新构造误差补偿几何模型并生成新的加工程序,以减小复杂薄壁件的加工误差,提高加工质量。通过一组叶片加工对比试验,按照名义去除量进行加工的最大加工误差是0.094mm,而按照误差补偿量进行加工的最大加工误差是0.031mm,仅是前者的32.9%,说明了本文方法在提高加工精度方面的有效性。 相似文献
12.
本文论述了航空发动机叶片进排气边的先进制造技术。首先介绍了椭圆叶片进排气边的重要性,然后描述了叶片进排气边加工的特点和制造技术现状,进而讨论了叶片进排气边智能加工检测一体化技术,最后对其中的关键技术和解决方案进行了分析。 相似文献
13.
从叶片零件的装夹、加工、量具设计、检测、编程坐标系及机床加工坐标系确定等方面,分析了叶片三坐标数控加工过程中造成叶片成型误差的原因及解决方法。 相似文献
14.
提出了一种旁置式的大型齿轮测量装置,分析了影响该装置测量精度的主要误差来源及其特性,给出了一种处理多因素耦合影响的灰色动态预报方法.首先,基于测量装置特性,对影响齿形误差测量精度的误差源进行分析和标定,计算出各误差源的灵敏度系数;然后对测得的有限误差数据进行再抽样及灰色生成,分别计算出在每次测量中各影响因素对测量结果的作用大小,之后按照误差合成方法生成误差源耦合作用结果;最后,通过在测量结果中去除耦合作用进而提高大型齿轮齿形误差测量精度.与测量精度为0.5μm的三坐标测量机进行对比测量,结果表明所提出测量装置能满足3级精度以上的大型齿轮齿形误差检测需求. 相似文献
15.
16.
叶片加工时由于公差和误差等原因其形状和尺寸往往会偏离设计状态,由此对叶片的气动性能造成严重影响。为了找到其中的规律,发展了1套简便可行的误差函数,在此基础上得到考虑了加工误差后的实际叶型。通过数值模拟得到了实际叶型的气动性能,并对其进行统计分析,验证了所采用的误差函数是可行的。计算了实际叶型的设计参数(如弦长、前尾缘半径、进出口金属角、最大厚度及其位置等),发现最大厚度和前缘半径的变化是导致实际叶型气动性能发生变化的最重要原因。在不同公差下,计算得到最小损失系数的概率密度函数,结合不同设计对叶型气动性能的不同要求,可用于评估设计和选取性价比最高的加工方式。 相似文献
17.
压气机叶片在加工过程中不可避免的会产生一定的加工误差。为了研究加工误差对压气机叶片气动性能的影响,设计并加工了4套平面叶栅用于模拟加工中常见的前缘及轮廓误差,并通过平面叶栅吹风试验获取误差影响规律。研究结果表明,前缘形状误差及正轮廓误差使得性能下降,前者使得叶型损失最高增加了23.4%而后者使得叶型损失最高增加了40.1%;此外负轮廓误差使得叶型性能有所提高,最高使得叶型损失降低16.6%。对应的影响规律可以用于提供合理的加工技术要求及制定合理的叶片检测标准。 相似文献
18.
19.
本文以超精密模辊机床为研究载体,将具有代表性的环槽微结构阵列作为研究对象。通过多体系统理论以及齐次坐标变换的方法建立机床的几何误差模型从而得到几何误差对环槽微结构阵列的影响,并用激光干涉仪对几何误差分量进行了测量。在进行数据处理后提出了一种补偿方法使环槽微结构的加工质量得到了改善。 相似文献