共查询到17条相似文献,搜索用时 62 毫秒
1.
采用CO2激光点火系统,研究常压下NEPE推进剂中AP在点火过程中的作用,以及AP的表面积,燃速催化剂,初温,热流密度等因素与点火延迟时间的关系,结果表明:与HMX相比,AP是缩短点火延迟时间的主要因素,初温对点火延迟时间的影响程度取决于热流量的大小,存在着所谓的“拉平效应”。而降低AP粒度,提高AP表面积,在初温大于15℃时,有利于缩短点火延迟时间,而在小于15℃时则相反,适当的添加燃速催化剂也有利于缩短点火延迟时间。 相似文献
2.
3.
本文根据实际固体火箭发动机的工作特点,以Summerfield.M的气相点火理论为基础,建立了用炽热含氧流动气体点燃复合固体推进剂的气相点火模型;并从该模型中导出了计算复合推进剂点火延迟时间的解析表达式((28)式);本文还认为:对于大多数复合推进剂(指以过氯酸铵为氧化剂)来说,是气相反应控制点火过程,因为利用炽热气体点火时,燃气的压力和氧化剂浓度是影响点火过程的主要因素。这一结论为如何调整点火器的设计参数,改进火箭发动机的点火性能指出了方向。 相似文献
4.
5.
采用CO2激光器、高速摄像机和红外热像仪等设备研究了NEPE推进剂激光辐照下点火燃烧过程和推进剂表面温度分布,分析了激光热流密度对点火延迟时间的影响以及NEPE推进剂对激光卸载的动态响应。结果表明:增大激光热流密度可以减小点火延迟时间,当热流密度小于6.7×105W·m-2时,点火延迟时间随热流密度的增大而显著减小,而热流密度大于该值时,点火延迟时间随热流密度的增大而变化微小。激光辐照对NEPE推进剂的燃烧有显著影响,使火焰明亮并伴有大量火花,推进剂表面的温度大大提高。激光卸载后,推进剂表面温度并未立即下降,而是在短暂的迟滞后跌落,随后又出现小幅度的缓慢上升。 相似文献
6.
7.
本文根据异质推进剂的特点,提出了含氧流动热气体点燃Ap复合推进剂的一维气相点火模型。模型中详细考察了点火过程中推进剂表面的分解过程和气相区的化学动力学过程,并利用有限差分法直接求解点火过程的控制方程,获得了点火延迟时间t_(ig)随燃烧室压力P变化的关系,固相区和气相区的温度分布,以及参加反应的各种化学组分在气相区的分布。t_(ig)随P变化的理论计算结果与实验测定曲线比较接近。对于深入研究点火问题有一定参考价值。利用本模型和计算方法还可以从理论上预示其它各种参数对Ap推进剂点火延迟的影响。 相似文献
8.
用φ50mm标准试验发动机对双基和复合推进剂的发动机点火问题进行以下一系列研究工作:(1)在双基推进剂发动机的初始工作时,喷管堵盖的厚度将如何影响点火压力和点火延迟时间。试验结果表明:堵盖的爆破时间应该是在燃烧室最大压力的75%~100%处,那就是说,较厚的堵盖将得到较好的试验发动机性能。(2)在双基推进剂发动机中,堵盖厚度一定,燃烧室压力为25~115atm,试验结果表明:如果点火压力小于75atm,则某些通用的公式可用来计算点火药量。如利用Barrere和Lancaster公式来计算点火药量时,上面所讲的二个结果是有效的。(3)用一种高能金属氧化剂作点火材料的装药量和复合推进剂发动机的自由容积之间关系,对于不同的Ku,可作成曲线。例如用硼硝酸钾(B/KNO_3)作为点火药,聚酯推进剂作为发动机装药,则在对数坐标上所得曲线是线性的,这样,在点火器设计中易于确定所需烟火剂装药量。 相似文献
9.
10.
11.
为适应整体级发动机强制偏流喷管的需要,研究了(BAMO/THF)/HMX/AP/B叠氮含硼推进剂的工艺性能、力学性能和燃烧性能。结果表明:对营口产硼粉进行包覆、团聚处理,解决了硼粉与推进剂其它组分相容性差和推进剂工艺性能差的问题;使用经处理的硼粉、较高相对分子质量的叠氮粘合剂BAMO/THF(50/50)和高效键合剂,能有效提高含硼推进剂的力学性能,达到:常温最大抗拉强度σm≥0 7MPa,高、中、低温的最大伸长率εm≥40%;推进剂具有较低的燃速压强指数(<0 40)和较宽的燃速可调范围,118发动机演示试验后喷管收敛段和喉部结构保持完好,无凝相产物沉积,且优于HTPB含铝推进剂的结果。叠氮含硼推进剂适合整体级发动机强制偏流喷管的使用。 相似文献
12.
13.
根据2000年第31届ICT国际年会的报告及交流内容,结合近年来国内外的有关文献报道,对新型含能材料及其在推进剂中应用的研究,按照高能氧化剂、含能粘合剂、高能燃料等分别进行了较详细的介绍和述评。 相似文献
14.
15.
16.