首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Voyagers 1 and 2 are now observing the latitudinal structure of the heliospheric magnetic field in the distant heliosphere (the legion between - 30 AU and the termination shock). Voyager 2 is observing the influence of the interstellar medium on the solar wind. The pressure of the interstellar pickup protons, measured by their contribution to pressure balanced structures, is greater than or equal to the magnetic pressure and much greater than the thermal pressures of the solar wind protons and electrons in the distant heliosphere. The solar wind speed is observed to decrease and the proton temperature increase with increasing distance from the sun. This may result from the production of pickup ions by the charge exchange process with the interstellar neutrals. The introduction of the pickup ions into the dynamics of the magnetized solar wind plasma appears to be an important new process which must be considered in future theoretical studies of the termination shock and boundary with the local interstellar medium.  相似文献   

2.
The solar wind evolves as it moves outward due to interactions with both itself and with the circum-heliospheric interstellar medium. The speed is, on average, constant out to 30 AU, then starts a slow decrease due to the pickup of interstellar neutrals. These neutrals reduce the solar wind speed by about 20% before the termination shock (TS). The pickup ions heat the thermal plasma so that the solar wind temperature increases outside 20–30 AU. Solar cycle effects are important; the solar wind pressure changes by a factor of 2 over a solar cycle and the structure of the solar wind is modified by interplanetary coronal mass ejections (ICMEs) near solar maximum. The first direct evidences of the TS were the observations of streaming energetic particles by both Voyagers 1 and 2 beginning about 2 years before their respective TS crossings. The second evidence was a slowdown in solar wind speed commencing 80 days before Voyager 2 crossed the TS. The TS was a weak, quasi-perpendicular shock which transferred the solar wind flow energy mainly to the pickup ions. The heliosheath has large fluctuations in the plasma and magnetic field on time scales of minutes to days.  相似文献   

3.
Heliospheric energetic neutral atoms (ENAs) that will be measured by the Interstellar Boundary Explorer (IBEX) originate from the heliosheath. The heliosheath is formed as a result of the interaction of the solar wind (SW) with the circum-heliospheric interstellar medium (CHISM). The expected fluxes of ENAs are strongly dependent on the nature of this interaction. In turn, the interaction of the solar wind with the local interstellar cloud has a complex and multi-component nature. Detailed theoretical modeling of the interaction between the SW and the local interstellar medium is required to understand the physics of the heliosheath and to predict and explain the heliospheric ENAs. This paper summarizes current state-of-art kinetic-gasdynamic models of the SW/CHISM interaction. We shall restrict our discussion to the kinetic-gasdynamic and kinetic-magnetohydrodynamic (MHD) models developed by the Moscow group. This paper summarizes briefly the main results of the first self-consistent, two-component, kinetic-gasdynamic model by Baranov and Malama (J. Geophys. Res. 98:15157–15163, 1993), presents new results obtained from the 3D kinetic-MHD model by Izmodenov et al. (Astron. Astrophys. 437:L35–L38, 2005a), describes the basic formulation and results of the model by Malama et al. (Astron. Astrophys. 445:693–701, 2006) as well as reports current developments in the model. This self-consistent model considers pickup protons as a separate non-equilibrium component. Then we discuss a stochastic acceleration model for pickup protons in the supersonic solar wind and in the heliosheath. We also present the expected heliospheric ENA fluxes obtained in the framework of the models.  相似文献   

4.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Pickup ions, created by ionization of slow moving atoms and molecules well inside the heliosphere, provide us with a new tool to probe remote regions in and beyond the heliosphere and to study injection and acceleration processes in the solar wind. Comprehensive and continuous measurements of H, He, C, N, O, Ne and other pickup ions, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that have been used to infer chemical and physical properties of the local interstellar cloud. With SWICS on Ulysses we discovered a new population of pickup ions, produced from atomic and molecular sources deep inside the heliosphere. The velocity distributions and composition of these “inner source” pickup ions are distinctly different from those of interstellar pickup ions, showing effects of strong adiabatic cooling, and a composition resembling that of the solar wind. Strong cooling indicates that the source of these pickup ions lies close to the Sun. The similarity of composition of inner source heavy ions to that of the solar wind implies that the dominant production mechanism for these pickup ions involves the absorption and re-emission of solar wind from interplanetary dust grains. While interstellar pickup ions are the seed population of the main Anomalous Cosmic Rays (ACRs), inner source pickup ions may be an important source of the rarer ACRs such as C, Mg, Si, S, and Fe. We present new results and review previous work with an emphasis on characteristics of the local interstellar cloud and properties of the inner source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Burlaga  L. F.  Ness  N. F. 《Space Science Reviews》1998,83(1-2):105-121
The latitudinal structure of the heliospheric magnetic field during much of the solar cycle is determined by a "sector zone", in which both positive and negative magnetic polarities are observed, and by the unipolar regions above and below the sector zone. Distinct corotating streams and interactions regions are found primarily in the sector zone during the declining phase of the solar cycle. Within a few AU, the streams and interaction regions are distinct and are related to solar features. A restructuring of the solar wind occurs between 1 AU and 15 AU, in which the isolated streams, interaction regions and shocks merge to form compound streams and merged interaction regions ("MIRs"). Memory of the source conditions is lost in this process. In the region between 30 AU and the termination shock (the "distant heliosphere"), the pressure of interstellar pickup protons dominates that of the magnetic field and solar wind particles and largely controls the dynamical processes. During 1983 and 1994, corotating streams and corotating interaction regions were observed at 1 AU. Merged interaction regions were observed at 15 AU in 1983, but not at 45 AU during 1994. This result suggests a further restructuring of the solar wind in the distant heliosphere, but variations from one solar cycle to the next might also contribute to the result. Approaching solar minimum in 1996, the latitudinal extent of the sector zone decreased, and Voyager 2 gradually entered the unipolar region below it. The speed was lower in the sector zone than below it. At Voyagers 1 and 2, the change in cosmic ray intensity is related to the magnetic field strength during each year from 1983 through 1996. The magnetic field strength has a multifractal distribution throughout the heliosphere. This fundamental symmetry of the heliosphere has not been incorporated explicitly in cosmic ray propagation models.  相似文献   

7.
The combination of recent observational and theoretical work has completed the catalog of the sources of heliospheric Pickup Ions (PUIs). These PUIs are the seed population for Anomalous Cosmic Rays (ACRs), which are accelerated to high energies at or beyond the Termination Shock (TS). For elements with high First Ionization Potentials (high-FIP atoms: e.g., H, He, Ne, etc.), the dominant source of PUIs and ACRs is from neutral atoms that drift into the heliosphere from the Local Interstellar Medium (LISM) and, prior to ionization, are influenced primarily by solar gravitation and radiation pressure (for H). After ionization, these interstellar ions are pickup up by the solar wind, swept out, and are either accelerated near the TS or beyond it. Elements with low first ionization potentials (low-FIP atoms: e.g., C, Si, Mg, Fe, etc.) are also observed as PUIs by Ulysses and as ACRs by Wind and Voyager. But the low-FIP composition of this additional component reveals a very different origin. Low-FIP interstellar atoms are predominantly ionized in the LISM and therefore excluded from the heliosphere by the solar wind. Remarkably, a low-FIP component of PUIs was hypothesized by Banks (J. Geophys. Res. 76, 4341, 1971) over twenty years prior to its direct detection by Ulysses/SWICS (Geiss et al., J. Geophys. Res. 100(23), 373, 1995) The leading concept for the generation of Inner Source PUIs involves an effective recycling of solar wind on grains near the Sun, as originally suggested by Banks. Voyager and Wind also observe low-FIP ACRs, and a grain-related source appears likely and necessary. Two concepts have been proposed to explain these low-FIP ACRs: the first concept involves the acceleration of the Inner Source of PUIs, and the second involves a so-called Outer Source of PUIs generated from solar wind interaction with the large population of grains in the Kuiper Belt. We review here the observational and theoretical work over the last decade that shows how solar wind and heliospheric grains interact to produce pickup ions, and, in turn, anomalous cosmic rays. The inner and outer sources of pickup ions and anomalous cosmic rays exemplify dusty plasma interactions that are fundamental throughout the cosmos for the production of energetic particles and the formation of stellar systems.  相似文献   

8.
Johannes Geiss is a world leader and foremost expert on measurements and interpretation of the composition of matter that reveals the history, present state, and future of astronomical objects. With his Swiss team he was first to measure the composition of the noble gases in the solar wind when in the late 1960s he flew the brilliant solar wind collecting foil experiments on the five Apollo missions to the moon. Always at the forefront of the art of composition measurements, he with his colleagues determined the isotopic and elemental composition of the solar wind using instruments characterized by innovative design that have provided the most comprehensive record of the solar wind composition under all solar wind conditions at all helio-latitudes. He discovered heavy interstellar pickup ions, from which the composition of the neutral gas of the Local Interstellar Cloud is determined, and the “Inner Source” of pickup ions. Johannes Geiss played a key role both in the in-situ measurements and modeling of molecular ions in comets, and the interpretation of these data. He and co-workers measured the composition of plasmas in the magnetospheres of Earth and Jupiter. Here we highlight Johannes Geiss’ many discoveries and seminal contributions to our knowledge of the composition of matter of the Sun, solar wind, interstellar gas, early universe, comets and magnetospheres.  相似文献   

9.
Proton phase space densities in the solar wind frame from suprathermal velocities 10 km s–1 to 30,000 km s–1 (0.5 eV–5 MeV) were derived from combined SWICS and HISCALE measurements when Ulysses was at 5 AU and –24° heliolatitude. The period (19–23 January 1993) encompasses a forward/reverse shock pair (20 January, 0500 UT and 22 January, 0300 UT). Strong evidence is found for shock acceleration of pickup protons from interstellar hydrogen at all energies measured.  相似文献   

10.
Mars and Venus do not have a global magnetic field and as a result solar wind interacts directly with their ionospheres and upper atmospheres. Neutral atoms ionized by solar UV, charge exchange and electron impact, are extracted and scavenged by solar wind providing a significant loss of planetary volatiles. There are different channels and routes through which the ionized planetary matter escapes from the planets. Processes of ion energization driven by direct solar wind forcing and their escape are intimately related. Forces responsible for ion energization in different channels are different and, correspondingly, the effectiveness of escape is also different. Classification of the energization processes and escape channels on Mars and Venus and also their variability with solar wind parameters is the main topic of our review. We will distinguish between classical pickup and ??mass-loaded?? pickup processes, energization in boundary layer and plasma sheet, polar winds on unmagnetized planets with magnetized ionospheres and enhanced escape flows from localized auroral regions in the regions filled by strong crustal magnetic fields.  相似文献   

11.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   

12.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

13.
Knowledge of injection and pre-acceleration mechanisms of ions is of fundamental importance for understanding particle acceleration that takes place in various astrophysical settings. The heliosphere offers the best chance to study these poorly understood processes experimentally. We examine ion injection and pre-acceleration using measurements of the bulk and suprathermal solar wind, and pickup ions. Our most puzzling observation is that high-velocity tails, extending to at least 60 keV/e - the upper limit of measurements -, are omnipresent in the slow, in-ecliptic solar wind; these tails exist even in the absence of any shocks. The cause of these tails is unknown. In the disturbed solar wind inside CIRs and downstream of shocks and waves these high-speed tails in the distributions of H+, He+ and He++ become more pronounced and more complex, but with the shapes of the tails showing the same dependence on ion speed for the different species. Pickup hydrogen and helium are found to be readily injected for subsequent acceleration to MeV energies, and thus are the dominant source of CIR-accelerated energetic ions. Competing sources of MeV ions heavier than He are: (1) heated suprathermal solar wind observed downstream of CIR shocks, (2) interstellar N, O and Ne, and (3) the newly discovered heavy pickup ions from an extended inner source inside 1 AU. Our main conclusion is that mechanisms other than the traditional first-order shock acceleration process produce most of the modestly accelerated ions seen in the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The well-established association of pickup ions with anomalous cosmic rays shows that acceleration of pickup ions to energies above 1 GeV occurs. At present, diffusive shock acceleration of the pickup ions at the termination shock of the solar wind seems to be the best candidate for acceleration to the high energies of anomalous cosmic rays, accounting well for many of their observed properties. However, it is shown that acceleration of pickup ions from their initial energies by this process appears to be difficult at very strong, nearly perpendicular shocks such as the termination shock. This injection problem remains without a clear solution. A number of alternatives have been proposed for the initial acceleration of pickup ions to the point where diffusive acceleration at the termination shock can take over, but none of these processes has yet emerged as a clear favorite.  相似文献   

15.
The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the “CR-B” relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.  相似文献   

16.
The quasilinear relaxation of pickup interstellar helium ions is described in the diffusion shell approximation. It is shown that the Cherenkov damping of Alfvén waves due to their refraction in the nonuniform solar wind could inhibit the complete relaxation of pickup helium ions over the bispherical shell.  相似文献   

17.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   

18.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Interplanetary measurements of the speeds, densities, abundances, and charge states of solar wind ions are diagnostic of conditions in the source region of the solar wind. The absolute values of the mass, momentum, and energy fluxes in the solar wind are not known to an accuracy of 20%. The principal limitations on the absolute accuracies of observations of solar wind protons and alpha particles arise from uncertain instrument calibrations, from the methods used to reduce the data, and from sampling biases. Sampling biases are very important in studies of alpha particles. Instrumental resolution and measurement ambiguities are additional major problems for the observation of ions heavier than helium. Progress in overcoming some of these measurement inadequacies is reviewed.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

20.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号