首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A remarkable streaming beam-like particle event of 60 keV-5 MeV ions and of 38–315 keV electrons has been reported previously. This event has been associated with the passage of a Coronal Mass Ejection (CME) over the Ulysses spacecraft on June 9–13, 1993. At this time, the spacecraft was located at 4.6 AU from the sun and at an heliolatitude of 32° south. It was proposed (Armstrong et al., 1994) that the particle injection source could have been of coronal origin. In this study, we analyse the solar activity during this period. We identify a region of solar radio noise storms in the corona and in particular, a flare on June 7 that presents all the required characteristics to produce the hot plasma beam observed in the interplanetary medium.  相似文献   

2.
Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the legs of neighboring magnetic loops within the rising CME. The average CME speed (740 km s–1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.  相似文献   

3.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

4.
Conclusions During the past three years there have been significant extensions of the solar data available. Over most of the solar spectrum between 1 – 2200 the new or improved observations have led to interesting problems in line identifications. The identifications have in turn led to new methods of determining the physical conditions in the solar atmosphere, eg electron density determinations from the Hei like ion intercombination line to forbidden line ratio (Gabriel and Jordan, 1969b). The majority of the strong lines have now been identified, either by theoretical considerations or from the extensive laboratory data which have recently become available. However, weak lines may also aid the understanding of the chromosphere and corona and work on the identifications of all remaining features observed must continue.  相似文献   

5.
The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on WIND is designed to determine uniquely the elemental, isotopic, and ionic-charge composition of the solar wind, the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 kms–1 (protons) to 1280 kms–1 (Fe+8), and the composition, charge states as well as the 3-dimensional distribution functions of suprathermal ions, including interstellar pick-up He+, of energies up to 230 keV/e. The experiment consists of three instruments with a common Data Processing Unit. Each of the three instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made by SMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition SMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; and (vii) the physics of the pick-up process of interstellar He as well as lunar particles in the solar wind, and the isotopic composition of interstellar helium.  相似文献   

6.
This paper presents some of the results that have been obtained from the Kitt Peak observations of coronal holes and the NRL observations of coronal transients during the recent years near sunspot maximum (1979–1981). On the average, low-latitude coronal holes of comparable size contained 3 times more flux near sunspot maximum than near the previous minimum. In the outer corona, transients occurred at the observed rate of at least 2 per day, and quiet conditions persisted during less than 15 % of the observed days. We describe a sample of the more than 800 events that we have observed so far, including the observation of a comet apparently colliding with the Sun.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.Visiting Astronomer, KPNO.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

7.
Observations of the solar spectrum have been made between 1200–2200 with high spectral resolution. The results were obtained with an all-reflecting echelle spectrograph carried by a stabilized Skylark rocket launched in April 1970. Measurements of the profiles of a number of emission lines due to Siii, Cii, Siiii and Civ formed in the temperature range 104-105 K, indicate ion energies which are considerably in excess of the electron temperatures derived from the ionization balance. Since the ion/electron relaxation time is very short the observed ion energies cannot correspond to an ion temperature and hence a non-thermal mechanical energy component exists in the transition zone.It is postulated that the non-thermal energy component represents the actual mechanical energy responsible for the heating of the corona, and, that, it is propagated as an acoustic wave. On this basis and with a preliminary estimate of the reflection from the transition zone, a flux of 3 × 105 erg cm -2 s -1 is established as entering the corona. This value is in agreement with estimates of the total energy loss from the corona due to conduction, radiation and the solar wind, thus establishing a gross energy balance.Theoretical calculations are currently underway to establish the physical nature of the atmosphere which would result from such a propagating flux. At the present time this has been carried out for an atmosphere in hydrostatic equilibrium and the energy balance equation solved. A preliminary temperature structure which results is shown in Figure 1, together with the derived distribution in electron density. This gives a corona of the right temperature and density but the observed structure deviates in detail from those derived from an analysis of the solar XUV spectrum.  相似文献   

8.
Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

9.
We review evidence that led to the view that acceleration at shock waves driven by coronal mass ejections (CMEs) is responsible for large particle events detected at 1 AU. It appears that even if the CME bow shock acceleration is a possible model for the origin of rather low energy ions, it faces difficulties on account of the production of ions far above 1 MeV: (i) although shock waves have been demonstrated to accelerate ions to energies of some MeV nucl–1 in the interplanetary medium, their ability to achieve relativistic energies in the solar environment is unproven; (ii) SEP events producing particle enhancements at energies 100 MeV are also accompanied by flares; those accompanied only by fast CMEs have no proton signatures above 50 MeV. We emphasize detailed studies of individual high energy particle events which provide strong evidence that time-extended particle acceleration which occurs in the corona after the impulsive flare contributes to particle fluxes in space. It appears thus that the CME bow shock scenario has been overvalued and that long lasting coronal energy release processes have to be taken into account when searching for the origin of high energy SEP events.  相似文献   

10.
Radio occultation, ultraviolet, and white-light measurements have expanded our knowledge of the morphology of density and velocity in polar coronal holes, and made it possible to carry out the first systematic comparisons between the Ulysses solar wind measurements and quantitative white-light observations of the solar corona. This paper summarizes the rationale and salient features of this new approach which has been used to relate the solar wind observed by Ulysses in 1993–1995 to the inner corona. The statistical characteristics (average, standard deviation, and autocorrelation function) of the Ulysses density measurements of the fast wind are found to be mirrored in those of polarized brightness measurements of path-integrated density made by the High Altitude Observatory (HAO) Mauna Loa K-coronagraph at 1.15 R . These results reinforce the conclusions from comparisons between measurements of the outer and inner corona. They show that the polar coronal hole extends radially into the solar wind, and that sources of the fast wind are not limited to coronal holes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Recent developments in the field of numerical simulation models for the study of shock wave propagation in the corona are presented. These models are based on gasdynamic (GD) and ideal (that is, dissipationless, except at shocks) magnetohydrodynamic (MHD) theories. The characteristics and physical interpretations of the results derived from these models are discussed in some detail.The most significant physical results obtained to date are provided by the two-dimensional non-planar, time-dependent, MHD numerical simulation model. In this model, the non-linear interaction among the three essential MHD waves, i.e., fast-, slow-, and Alfvén waves are demonstrated. Finally, the physical relevance of these numerical simulation models in relation to observed solar activity is presented.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

12.
The carbonaceous chondrites are a group of stony meteorites characterized by the presence of an appreciable amount of carbonaceous material other than free carbon (diamond and graphite). They have been divided into three subgroups known respectively as Type I, Type II, and Type III. Analyses of Type I meteorites show about 3–5% of carbon and 20% of combined water; they consist largely of hydrated magnesium-iron silicate, magnetite, and magnesium sulfate, contain no chondrules, and have a density about 2.2. Analyses of Type II meteorites show about 2–3% of carbon and 10–15% of combined water; they consist of a groundmass of hydrated magnesium-iron silicate enclosing chondrules of olivine and pyroxene which are almost iron-free, and have a density of 2.6–2.9. Analyses of Type III meteorites show about 0.5–2% of carbon and 2% combined water; they consist largely of olivine (often variable in composition, but averaging 30–40 mole per cent Fe2SiO4), with accessory pigeonite and sulfide minerals, and have a density about 3.4.The carbonaceous material and combined water in these meteorites are clearly of extraterrestrial origin, but their significance is not well understood. A biological origin has been claimed for some of the organic compounds on the basis of their composition, but this claim is the subject of considerable dispute. Microscopic objects with regular outline (organized elements) have been recognized in some of these meteorites; some investigators have claimed these to be extraterrestrial fossils, others have ascribed them to terrestrial contamination or considered them to be crystals or crystal aggregates of non-biological origin.  相似文献   

13.
Between June and November of 1970, 26 constant level balloons were released from Ascension Island (8 S) for flight at 30 and 50 mb. The balloons were positioned by the Interrogation, Recording and Location System (IRLS) aboard the Nimbus D satellite. In general, balloon positioning appeared to be accurate to within a few kilometers, although occasionally there was doubt as to whether the balloon position was to the right or left of the satellite subtrack. Eight of the flights at 50 mb and three of the flights at 30 mb were tracked for more than one month, and one 50 mb flight was tracked continuously for more than 5 months while making 7 circumnavigations of the Earth. From the satellite-determined 12-hourly balloon positions in the tropics, 223 smoothed 24-hour-average zonal and meridional winds were obtained at 30 mb and 693 such winds were obtained at 50 mb. Near the equator the balloons moved from east to west at a speed of about 23 ms–1 at 50 mb and 28 ms–1 at 30 mb, while undergoing a mean northward drift of approximately 0.1 ms–1. The northward drift was a maximum in the Northern Hemisphere winter, suggesting a weak upward extension of the Hadley Cell to 50 mb. Superimposed on this drift were oscillations in meridional velocity of about 2-month period, with these oscillations also most pronounced in the Northern Hemisphere winter. Small (1–3 ms–1) short-period fluctuations in meridional velocity were evident directly above the equator at 50 mb. These waves appear to move westward at speeds of 30–40 ms–1 and to have a wavelength of about 90° longitude. They were responsible for transporting small amounts of westerly momentum into the winter hemisphere. Fluctuations in zonal velocity (Kelvin waves) were also delineated by flights near the equator. These waves appear to move eastward at speeds of 30–40 ms–1 and to have a wavelength of 360° longitude. Some comparisons are made between these IRLS data and the data obtained from GHOST balloon flights at the same heights in early 1969.  相似文献   

14.
The relative abundances of low energy ions (0.6–2.0 MeV/n) in solar energetic particle (SEP) and corotating interaction region (CIR) events have been measured by the EPAC experiment aboard Ulysses since launch in October 1990 until the present time. We give an overview of the abundances of heavy ions (He, C, Ne, Fe) relative to oxygen during energetic particle events lasting longer than 5 days during the in- and out-of-ecliptic phase of the mission. While the period Oct. 1990 to Aug. 1992 was dominated by high solar activity the Ulysses out of ecliptic passage at solar latitudes up to 45° went parallel to the declining phase of solar activity. Thus a very clear structure of corotating interaction regions was observed. While the in-ecliptic composition is in general agreement with measurements made near the Earth, the development of the CIR-composition shows two phases: From Aug. 1992 to May 1993 the C/O-ratio is 0.55–0.70, afterwards it increases to 0.8–0.9. This increase is correlated to the disappearance of the current sheet at 30° solar latitude reported by Smithet al. (1993).  相似文献   

15.
In March/April 1984 eleven EXOSAT observations of Her X-1 were performed sampling a full 35 day cycle. Spectral analysis of the ME and GSPC data shows that the iron line emission is present during all phases. During the main-on state we see an iron line at 6.65 ± 0.07 keV with a FWHM of 1–2 keV and an equivalent width of 300 to 400 eV. The high resolution GSPC data indicate that the line profiles have external wings and are not simple Gaussian. We report for the first time on the detection of an iron line during the intermediate-on state with about the same parameters as the main-on state line but an equivalent width a factor of 2 larger. During the off state between main-on and intermediate-on we detected a broad iron line feature at about 6.0 keV with an equivalent width of 2 keV. We discuss the Alfven region and a hot corona at the inner region of the accretion disk as the possible sites of the line production.  相似文献   

16.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.  相似文献   

17.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

18.
Electrons with energy up to 40 kV have been injected into semi-trapped orbits from sounding rockets at Wallops Island, Virginia, and at Fort Churchill, Manitoba, Canada. By directing the rocket trajectory to have a horizontal component which in direction and speed matched the bounce displacement of the injected electrons, it was possible to detect conjugate echoes at Wallops and possibly at Churchill, and to study the distribution of the echoes in space, time and energy. By combining observations of many echoes, a composite picture can be obtained of the beam patterns. Atmospheric scattering at the conjugate point of Wallops island has been extensively studied, and the process produces a scale width of 5–10 m, but with an echo intensity which is only 10% of theoretical estimates. In the Wallops experiments, a doublet hump appeared in the echoes which is not understood. Models of the magnetic fields are used to predict the bounce displacement, and by comparison with the observations to evaluate other effects such as electric field drift integrated over a complete bounce period. Preliminary evaluation of the Churchill results indicate the presence of substantial residual effects, which may be electric field drifts. The artificial beam injection was observed to change natural electron precipitation in the 20–40 keV range. The process of rocket neutralization, beambeam interactions, and electromagnetic radiation from the beams has been studied and has been part of the Echo program.Presented for the author by R. L. Arnoldy at the Workshop on Controlled Magnetospheric Experiments, Kyoto, Japan, Sept., 1973.  相似文献   

19.
Rephaeli  Y. 《Space Science Reviews》2002,100(1-4):61-72
Scattering of the cosmic microwave background (CMB) radiation by hot gas in clusters of galaxies produces a unique spectral signature – the Sunyaev–Zeldovich (S–Z) effect – that constitutes an important cosmological probe. The effect has been sensitively measured in more than 40 clusters, mostly with ground-based interferometric arrays operating at low microwave frequencies. These measurements have already yielded important information on cluster masses, and the Hubble constant. The scientific yield will be greatly increased when spectral and high-resolution spatial measurements of the effect in a large sample of nearby clusters will be made with stratospheric telescopes equipped with bolometric arrays. I review the current status of observational and theoretical S–Z work, and describe the main goals and challenges of using the effect as a more precise probe of cluster properties and cosmological parameters.  相似文献   

20.
Results are presented from an X-ray survey of 50 square degrees of the high galactic latitude sky at sensitivities in the range 7·10–14 – 5·10–12 erg/cm2 sec (0·3–3·5 keV) carried out with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. The extragalactic sample consists of 48 sources which have been used to determine the number flux relation. The content of the sample is analyzed in terms of types of sources and is found to be significantly different from the content of similar samples selected at higher fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号