共查询到19条相似文献,搜索用时 31 毫秒
1.
通过对0°W-39°W,40°W-70°W,71°W-90°W经度范围内太阳质子事件与太阳耀斑的相关性计算分析,发现太阳质子事件与太阳耀斑的相关系数依赖于经度.太阳耀斑积分与地球磁链接区域(40°W-70°W)太阳质子事件强度的相关系数最大.相关系数的这种特点与耀斑加速粒子的最大流量只出现在磁链接区域的特征相吻合.计算结果表明,太阳耀斑对太阳质子事件具有贡献,即耀斑对 E ≥ 10MeV的质子加速有贡献.耀斑和CME在磁链接区域对太阳质子事件的贡献相同,这说明太阳质子事件是混合型事件. 相似文献
2.
质子耀斑活动区再现规律的研究结果表明,日面上存在着经度方向漂移式的“活火山”,即质子活动复活体,“活火山”定期地复活,并爆发质子耀斑。其复活长周期为8-11.6年,与活动周11年周期基本一致;短周期为1.26年,与活动周峰年时间宽度一致。在22周峰年中,日面南北半球上各有一个强质子活动复活体,它们爆发值流量≥100pfu和≥1000pfu的质子耀斑各占周期同类耀斑总数的70.7%和83.3%。 相似文献
3.
太阳质子耀斑X射线辐射特征的研究, 为太阳质子事件的警报提供一个重要的途径和方法。本文分析了第21周太阳活动峰年(1977—1986)期间质子耀斑和相应的GOES和SMM卫星观测的X射线辐射资料, 结果表明:大部分质子耀斑的硬X射线峰值流量F HX≥10 4s/c;积分流量F 0≥10 6counts;硬X射线辐射到达峰值时间T R≥100s;持续时间T D≥10 3s;X光子最高能量E x≥300keV;平均能谱指数√r≤3.5;高能时延T L≥10s。利用这些X射线暴的特征参数, 对第21周峰年大质子事件作警报检验, 结果是:报准率为94%, 虚报率为40%。 相似文献
4.
根据SMM卫星观测资料,分析了GRL,PE和GRL/PE三种类型质子耀斑在硬X射线辐射特征上的差异。结果表明,存在的差异与粒子加速区(或作用区)分别处于不同的日面高度有关。 相似文献
5.
我国“风云一号(B)”气象卫星于1990年9月3日发射入轨,该星载有粒子成分监测器,用来探测空间粒子辐射环境,其中包括测量太阳耀斑时产生的太阳质子事件及其重粒子丰度;银河宇宙线异常成分与强度;内辐射带磁异常区的粒子通量及重粒子成分,“风云一号(B)”卫星运行半年来,我们已获取了上述有关的粒子辐射资料,在卫星上获得这些资料在我国尚属首次,本文主要分析观测到的太阳质子事件。 相似文献
6.
选用NOAA提供的太阳质子事件表以及SGD发表的与其相关的射电多波段的观测资料进行了统计分析,试图从厘米波,毫米波爆发与质子事件的关系上寻找规律,从而获得一些有意义的结果。 相似文献
7.
为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m -2,CME速度小于1300km·s -1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m -2,CME速度大于1300km·s -1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率. 相似文献
8.
利用1966年以来的大量太阳耀斑以及相应质子事件的资料,分析研究了质子事件到达时间和极大时间同耀斑经度位置的统计关系.结果表明当耀斑位置处于经过地球的行星际大尺度场磁力线足点位置附近时,上述两种时间过程最短.这个结果支持了太阳耀斑粒子经日冕传播再向行星际空间传播的二阶段传播模型. 相似文献
9.
阐述了太阳潮波动力学的概况,依据实际资料的统计结果指出;行星引潮力触发耀斑的效应随耀斑级别的增大而增强;对于3级及其以上耀斑,强潮汐触发较之弱触发的耀斑产出率之比高达9.33;这个重要事实在预报地球和日地空间灾害性扰动方面,会有相当大的实际价值。 相似文献
10.
对ISEE-3人造卫星在1980年5月—1981年8月中,观测到的48个X射线耀斑进行了分析,发现其中有1/3是在6个活动区中重复爆发的.研究这部分X射线耀斑的物理性质与所在活动区的黑子面积、活动区类型及磁结构的关系,得到了一些结果:(1)发生在同一活动区中的X射线耀斑,其硬X射线峰值积分流量及谱硬度与活动区黑子面积成正相关;(2)多次爆发X射线耀斑的活动区全部具有δ型磁结构;(3)发生在不同活动区中的X射线耀斑,其物理特征与所在活动区的面积大小无明显关系.由此可以认为,活动区磁场梯度的大小,亦即活动区电流的大小,在爆发耀斑的过程中具有决定性作用.此外,还用电流环模型从理论上讨论了上述特征. 相似文献
11.
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as . This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares. 相似文献
12.
Over the last few years, dynamo theorists seem to be converging on a basic scenario as to how the solar dynamo operates. The strong toroidal component of the magnetic field is produced in the tachocline, from where it rises due to magnetic buoyancy to produce active regions at the solar surface. The decay of tilted bipolar active regions at the surface gives rise to the poloidal component, which is first advected poleward by the meridional circulation and then taken below the surface to the tachocline where it can be stretched to produce the toroidal component. The mathematical formulation of this basic model, however, involves the specification of some parameters which are still uncertain. We review these remaining uncertainties which have resulted in disagreements amongst various research groups and have made it impossible to still arrive at something that can be called a standard model of the solar dynamo. 相似文献
13.
We have performed the analysis of the magnetic topology of active region NOAA 10486 before two large flares occurring on October 26 and 28, 2003. The 3D extrapolation of the photospheric magnetic field shows the existence of magnetic null points when using two different methods. We use TRACE 1600 Å and 195 Å brightenings as tracers of the energy release due to magnetic reconnections. We conclude on the three following points: - 1. The small events observed before the flares are related to low lying null points. They are long lasting and associated with low energy release. They are not triggering the large flares.
2. On October 26, a high altitude null point is found. We look for bright patches that could correspond to the signatures of coronal reconnection at the null point in TRACE 1600 Å images. However, such bright patches are not observed before the main flare, they are only observed after it. 3. On October 28, four ribbons are observed in TRACE images before the X17 flare. We interpret them as due to a magnetic breakout reconnection in a quadrupolar configuration. There is no magnetic null point related to these four ribbons, and this reconnection rather occurs at quasi-separatrix layers (QSLs).
We conclude that the existence of a null point in the corona is neither a sufficient nor a necessary condition to give rise to large flares. 相似文献
14.
Dynamic processes in the interplanetary space have been investigated using time variations in time parameters of the cosmic-ray rigidity spectrum. Change of heliosphere electromagnetic characteristics has been found out to precede sporadic phenomena on the Sun. In particular, it is shown that sporadic phenomena are followed by generation of local polarization electric fields, decrease of the magnetic-field strength in small-scale heliospheric structures, and increase of the potential difference between the pole and the plane of the ecliptic. These features allow prediction of solar proton events in advance (from several hours to several tens of hours) with a high degree of confirmation. 相似文献
15.
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions. 相似文献
16.
A complex radio event was observed on January 17, 2005 with the radio-spectrograph ARTEMIS-IV, operating at Thermopylae, Greece; it was associated with an X3.8 SXR flare and two fast Halo CMEs in close succession. We present dynamic spectra of this event; the high time resolution (1/100 s) of the data in the 450–270 MHz range, makes possible the detection and analysis of the fine structure which this major radio event exhibits. The fine structure was found to match, almost, the comprehensive Ondrejov Catalogue which it refers to the spectral range 0.8–2 GHz, yet seems to produce similar fine structure with the metric range. 相似文献
17.
Some flares are known to drive seismic transients into the solar interior. The effects of these seismic transients are seen in helioseismic observations of the Sun’s surface thousands of km from their sources in the hour succeeding the impulsive phase of the flare. Energetic particles impinging from the corona into the chromosphere are known to drive strong, downward-propagating shocks in active region chromospheres during the impulsive phases of flares. H observations have served as an important diagnostic of these shocks, showing intense emission with characteristic transient redshifts. In most flares no detectable transients penetrate beneath the active region photosphere. In those that do, there is a strong correlation between compact white-light emission and the signature of seismic emission. This study introduces the first known H observations of acoustically active flares, centered in the core of the line. The morphology of line-core emission H in the impulsive phase of the flare is similar to that of co-spatial line-core emission in NaD 1, encompassing the site of seismic emission but more extended. The latter shows a compact red shift in the region of seismic emission, but a similar feature is known to appear in a conjugate magnetic footpoint from which no seismic emission emanates. Radiative MHD modelling based on the profiles of chromospheric line emission during the impulsive phases of flares can contribute significantly to our understanding of the mechanics of flare acoustic emission penetrating into the solar interior and the conditions under which it occurs. 相似文献
18.
The Sun is the nearest astrophysical source with a very intense emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in the literature numerous studies published about polarization predictions, for a wide range of solar flares models involving the emission from thermal and/or non-thermal processes, but observations in the X-ray band have never been exhaustive.The gas pixel detector (GPD) was designed to achieve X-ray polarimetric measurements as well as X-ray images for far astrophysical sources. Here we present the possibility to employ this instrument for the observation of our Sun in the X-ray band. 相似文献
19.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes. 相似文献
|