首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cosmonauts' exposure to cosmic rays during long-term spaceflight can cause unfavorable effects in health and risk for the crew members' lives. All unfavorable effects induced by exposure should be taken into consideration for the risk estimation. They should include both the acute deterministic effects and delayed effects called stochastic. On the ground the limitation of unfavorable consequences of acute exposure is achieved by means of establishing dose limits. But in space applications this approach can't be acceptable. Establishing a fixed dose limit is adequate to introducing indefinite reserve coefficient and therefore ineffective usage of spacecraft resource. The method of radiation risk calculation caused by acute and delayed effects of cosmonauts' exposure is discussed and substantiated in the report. Peculiarities of the impact of permanent radiation sources (galactic cosmic rays and trapped radiation) and the variable one (solar cosmic rays) are taken into consideration.  相似文献   

2.
Radiation cataract, a non-stochastic effect on the lens, is readily amenable to non-invasive analysis. Thus, it provides the means to assess radiation risk in space and for long-term monitoring of those who frequent that environment. The importance of such evaluations are underscored by the uncertainties associated with the assignment of quality factors for the effects of heavy charged particles constituting cosmic and solar radiation. Experimental studies were conducted using albino rats to evaluate the cataractogenic potential of 570 MeV/amu Argon ions administered as both single and protracted doses. The cataract studies and investigations of quantitative cytopathological changes associated with them indicate that as the dose of heavy particles decreases, the relative biological effectiveness, compared to X rays, increases. Fractionating the exposures not only failed to reduce the cataractogenic effect but caused a dose-dependent enhancement in the time of onset of opacification. Cytopathologically, the damage caused by heavy particles, when compared to low-LET radiation was found to be quantitatively dissimilar but qualitatively identical. In addition, damage which might be consistent with microlesions was not evident. The data indicates that as regards the cataractogenic potential of heavy particles at low doses an assignment of a Quality Factor (QF) of at least 40 may be in order.  相似文献   

3.
Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.  相似文献   

4.
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.  相似文献   

5.
Crews of manned interplanetary missions may accumulate significant radiation exposures from the galactic cosmic ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported radiation fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.  相似文献   

6.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

7.
The risk of radiation-induced cancer to space travelers outside the earth's magnetosphere will be of concern on missions to the Moon and beyond to Mars. High energy galactic cosmic rays with high charge (HZE particles) will penetrate the spacecraft and the bodies of the astronauts, sometimes fragmenting into nuclear secondary species of lower charge but always ionizing densely, thus causing cellular damage which may lead to malignant transformation. To quantitate this risk, the concept of dose equivalent (in which a quality factor Q as a function of LET is assumed) may not be adequate, since different particles of the same LET may have different efficiencies for tumor induction. Also, RBE values on which quality factors are based depend on response to low-LET radiation at low doses, a very difficult region for which to obtain reliable experimental data. Thus, we introduce a new concept, a fluence-related risk coefficient (F), which is the risk of a cancer per unit particle fluence and which we call the risk cross section. The total risk is the sum of the risk from each particle type: sigma i integral Fi(Li) phi i(Li) dLi, where Li is the LET and phi i(Li) is the fluence-LET spectrum of the ith particle type. As an example, tumor prevalence data in mice are used to estimate the probability of mouse Harderian gland tumor induction per year on an extra-magnetospheric mission inside an idealized shielding configuration of a spherical aluminum shell 1 g/cm2 thick. The combined shielding code BRYNTRN/GCR is used to generate the LET spectra at the center of the sphere. Results indicate a yearly prevalence at solar minimum conditions of 0.06, with 60% of this arising from charge components with Z between 10 and 28, and two-thirds of the contribution arising from LET components between 10 and 200 keV/micrometers.  相似文献   

8.
Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time.  相似文献   

9.
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order.  相似文献   

10.
A major objective of our heavy-ion research is to understand the potential carcinogenic effects of cosmic rays and the mechanisms of radiation-induced cell transformation. During the past several years, we have studied the relative biological effectiveness of heavy ions with various atomic numbers and linear energy transfer on neoplastic cell transformation and the repair of transformation lesions induced by heavy ions in mammalian cells. All of these studies, however, were done with a high dose rate. For risk assessment, it is extremely important to have data on the low-dose-rate effect of heavy ions. Recently, with confluent cultures of the C3H10T1/2 cell line, we have initiated some studies on the low-dose-rate effect of low- and high-LET radiation on cell transformation. For low-LET photons, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at low dose rate. Cultured mammalian cells can repair both subtransformation and potential transformation lesions induced by X rays. The kinetics of potential transformation damage repair is a slow one. No sparing effect, however, was found for high-LET radiation. There was an enhancement of cell transformation for low-dose-rate argon (400 MeV/u; 120 keV/micrometer) and iron particles (600 MeV/u; 200 keV/micrometer). The molecular mechanisms for the enhancement effect is unknown at present.  相似文献   

11.
Evidence is reviewed concerning the variation of RBE values of high-LET radiations for non-stochastic effects, generally impairment of tissue integrity and function. The RBE values are dependent on the type of radiation, the type of tissue effect and the dose rate or fractionation schedule. RBE values depend strongly on the effect considered, with high values for late effects in lung, kidney and central nervous system. RBE values generally increase with decreasing dose rate or dose per fraction. Maximum values can be derived by extrapolation on the basis of a radiobiological model. These values are denoted RBEm to distinguish them from RBEM derived for stochastic effects, e.g. carcinogenesis. Values of RBEm are generally in the range of 2 to 10 and are considerably smaller by a factor of 2 to 5 than values of RBEM for various types of stochastic effects. RBE values for effects from actual exposures to mixtures of high-LET and low-LET radiations can be derived by considering the doses received and the tissue at risk. Applications of RBEm values will yield estimates of maximum values of equivalent doses and these should only be applied for planning medical interventions if the contribution from high-LET radiation is small. The selection of Q values for radiation protection is mostly based on RBE--values and the application of Q values in cases where non-stochastic effects are important might therefore result in an overestimate of the risks of exposure.  相似文献   

12.
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.  相似文献   

13.
The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.  相似文献   

14.
15.
Extremely detailed computerized anatomical male (CAM) and female (CAF) models that have been developed for use in space radiation analyses are discussed and reviewed. Recognizing that the level of detail may currently be inadequate for certain radiological applications, one of the purposes of this paper is to elicit specific model improvements or requirements from the scientific user-community. Methods and rationale are presented which describe the approach used in the Space Shuttle program to extrapolate dosimetry measurements (skin doses) to realistic astronaut body organ doses. Several mission scenarios are presented which demonstrate the utility of the anatomical models for obtaining specific body organ exposure estimates and can be used for establishing cancer morbidity and mortality risk assessments. These exposure estimates are based on the trapped Van Allen belt and galactic cosmic radiation environment models and data from the major historical solar particle events.  相似文献   

16.
The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.  相似文献   

17.
A possibility of a manned mission to Mars without exceeding the current radiation standards is very doubtful during the periods of minimum solar activity since the dose equivalent due to galactic cosmic rays exceeds currently recommended standards even inside a radiation shelter with an equivalent of 30 g cm-2 aluminum. The radiation situation at the time of maximum solar activity is determined by the occurrence of major solar proton events which are exceedingly difficult to forecast. This paper discusses the radiation environment during a manned mission to Mars in the years between minimum and maximum solar activity when the galactic cosmic ray intensity is considerably reduced, but the solar flare activity has not yet maximized.  相似文献   

18.
Light flashes in the eye as recorded by astronauts on missions outside the geomagnetosphere are presumably caused by single particle traversals of galactic cosmic rays traversing the retina. Although these flashes are not considered to have deleterious short- or long-term effects on vision, they are testimony that the body can detect single particle traversals. The frequencies of the flashes implicate ions in the charge range of 6 to 8 (i.e., carbon and/or oxygen ions). Other particles with higher charge and causing more ionization are present at lower frequencies. The possibility of the importance of such single-track effects in radiation carcinogenesis and other late effects suggest that a risk assessment system based on particle fluence rather than absorbed dose might be useful for assessing risk on long-term space missions. Such a system based on the concept of a risk cross section is described. Human cancer risk cross sections obtained from recently compiled A-bomb survival data are presented, and problems involving the determination of the LET-dependence of such cross sections are discussed.  相似文献   

19.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   

20.
对利用蒙特卡罗方法对由银河宇宙射线引起的空间辐射场各成分进行计算的方法进行了调研,对计算模型的建立以及计算过程中通常使用的方差减小技术进行分析,给出了美国的Roesler等人利用FLUKA程序以及加拿大Anid等人利用MCNPX程序计算得到的由银河宇宙射线引起的空间辐射场各量值及其与实验结果的比较,验证了计算方法与计算模型的可靠性。对任意航线空间辐射场剂量分布预评估方法进行分析,给出了由银河宇宙射线引起的空间辐射场的基本特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号