首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sauer J 《Acta Astronautica》2004,54(2):127-132
The paper reviews a number of research studies that were carried out with a PC-based task environment called Cabin Air Management System (CAMS) simulating the operation of a spacecraft's life support system. As CAMS was a multiple task environment, it allowed the measurement of performance at different levels. Four task components of different priority were embedded in the task environment: diagnosis and repair of system faults, maintaining atmospheric parameters in a safe state, acknowledgement of system alarms (reaction time), and keeping a record of critical system resources (prospective memory). Furthermore, the task environment permitted the examination of different task management strategies and changes in crew member state (fatigue, anxiety, mental effort). A major goal of the research programme was to examine how crew members adapted to various forms of sub-optimal working conditions, such as isolation and confinement, sleep deprivation and noise. None of the studies provided evidence for decrements in primary task performance. However, the results showed a number of adaptive responses of crew members to adjust to the different sub-optimal working conditions. There was evidence for adjustments in information sampling strategies (usually reductions in sampling frequency) as a result of unfavourable working conditions. The results also showed selected decrements in secondary task performance. Prospective memory seemed to be somewhat more vulnerable to sub-optimal working conditions than performance on the reaction time task. Finally, suggestions are made for future research with the CAMS environment.  相似文献   

2.
This paper presents an experiment which examined the effects of isolation and confinement during a simulation of a short-term space mission. During the 7-day spaceflight simulation, four Canadian astronauts were tested daily on a 30-min performance task. The task, CAMS (Cabin Air Management System), represents a computer-based simulation of a generic life support system. As a multiple-task environment, it allows the measurement of a wide range of task management variables such as primary and secondary task performance, and system control activities. Measures of subjective state variables were also taken. The results did not show any evidence of serious performance decrements for any crew member. The analysis revealed different adjustment patterns with which crew members responded as a function of mission duration and variations in workload. Among the secondary tasks employed, prospective memory was found to be more sensitive than reaction time to increases in workload. The paper concludes with a discussion of the utility of spaceflight simulations and computer-based simulations of space work.  相似文献   

3.
The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Methods: Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Results: Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. Conclusion: The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations.  相似文献   

4.
A simulation for flight of international crew on space station took place in Moscow from July 1999 to April 2000 (SFINCS) at the State Biomedical Institute of Russia (IBMP) isolation chambers. Objectives of this study were to identify concepts of psychosocial adaptation and of social interactions to develop an explanation of the transcultural group performance. Method: constructivist epistemology with grounded theory research and fourth generation evaluation were used. Data on processes and interactions were gathered during 110 days of confinement as a subject and extended to 240 days as an outside scientist. Results indicate that coping is influenced by usual coping strategies and coping behaviors inside. Several stresses and human factor issues were identified altering well being and performance inside the chambers. Enabling and limiting forces are discussed. A theory on transcultural group performance is proposed. Issues are raised that appear critical to selection, training and group performance.  相似文献   

5.
In contemporary orbital missions, workloads are so high and varied that crew may rarely experience stretches of monotony. However, in historical long duration missions, occurrences of monotony were, indeed, reported anecdotally by crew. Of the effective countermeasures that appear to be at hand, many rely on visual or logistical proximity to the Earth, and are not feasible in the remote context of an extended deep space mission scenario. There, particularly in- and outbound cruising stages would be characterised by longer, comparably uneventful periods of low workload, coupled with confinement and unchanging vehicle surroundings.  相似文献   

6.
朱璐  李响  胡迪科  周政言 《宇航学报》2022,43(7):946-956
针对星箭分离过程,建立了减冲击环结构模型,并分析了该结构的减冲原理。利用冲击响应谱的时域合成算法计算获得符合冲击谱规范的时域载荷,并以此作为结构优化设计中动力学模型的输入载荷工况。以减冲击环的连续层数、单层支撑块数、连续层厚度、支撑块层高度以及环的外半径和内半径6个结构参数为设计变量,以减冲效果和结构强度、刚度为约束,以质量最轻为目标,建立减冲击环的结构优化设计模型,这是一包含离散变量和连续变量的混合优化问题。为了在跨平台下求解该混合优化问题,采用代理模型策略和自适应模拟退火算法求解,并在最优点处开展结构性能对设计变量的敏度计算,对计算结果进行了分析评估。本研究对强冲击动力学环境下的航天器结构分析与设计有一定的指导意义。  相似文献   

7.
The stepping stones are traced from the birth of the IAA Committee on Space Rescue to the present day, 25 years later. The scope of the symposium was extended, successively, from that of space rescue to safety and rescue, and from crew rescue and spacecraft retrieval following Earth-surface touchdown to worldwide distress and disaster response, with benchmarks made on bringing to fruition satellite-aided search and rescue responding to terrestrial distress (COSPAS/SARSAT) and to space applications for disaster response.

In later years, a symposium session addressing space activities' impact on environment was initiated, with a principal focus on man-made space debris.

In 1991, a subcommittee on quality and an Ad Hoc Expert Group on space debris were established.

Its twenty-fifth-year contributions and influence are evident in the committee's organizational involvement across the IAA/IAF/COSPAR sessions at the 1992 World Space Congress.  相似文献   


8.
D. Lugg  M. Shepanek 《Acta Astronautica》1999,44(7-12):693-699
Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.  相似文献   

9.
Pellis NR  North RM 《Acta Astronautica》2004,55(3-9):589-598
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.  相似文献   

10.
The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.  相似文献   

11.
王刚  杨昌昊  祁玉峰 《宇航学报》2021,42(11):1355-1364
Firstly, the analytical formulas of the dynamic magnification factor with the pulse time of the response spectrum of a single degree of freedom system under the rectangular and half sine pulse are derived. Then the parachute inflation and ejection low frequency high shock load dynamic simulation model of the Mars entry vehicle is built based on abaqus explict dynamics, and the influence of the shock load shape, load time and load damping are analyzed. Finally, the experiments of the opening parachute load suspension impact dynamic load and the parachute load real parachute impact dynamic load are carried out.The results show that the structure responds decline when the shock load time is less than  1 ms , and the static equivalence load becomes steady when the load time is longer than 5 ms; the dynamics equivalence load of the parachute inflation is about 1 time than static because of the smooth time wave, but the parachute ejection’s is about 1~2 times than static due to the steep rectangle wave.   相似文献   

12.
The microgravity measurement assembly (MMA) is a precision measurement facility for ground and on-orbit disturbance accelerations on board Spacelab, being currently under development by MBB/ERNO under DFVLR contract. MMA is using a new generation of micromechanical acceleration detectors developed by CSEM under ESTEC contract. Small dimensions of the triaxial sensor packages allow for installation very close to scientific experiments; mass is significantly reduced compared to conventional systems. Six or more of these mini-sensor packages are installed at the most g-sensitive experiments of Spacelab Module Missions. Acceleration and housekeeping data are processed in real time by a dedicated microcomputer and transmitted to the ground. Thus, for the first time, synchronized and comparable precision acceleration data are available in real time on ground for on-line judgement of the microgravity environment desired for experiment success, offering the possibility, for example of experiment repetition in case of excessive g-disturbances. Furthermore, MMA allows for immediate feedback to the crew concerning the microgravity effects of their dynamic behavior, with the aim of crew training towards lower disturbances. An additional mobile sensor package can be installed at vibration sources, e.g. pumps, centrifuges etc. or any arbitrary location inside the Spacelab Module. An impact hammer can be used together with MMA in order to measure in-flight structural transfer functions. The MMA on-board system and ground station and its planned utilization for the German Spacelab Mission D-2 is described.  相似文献   

13.
DRFM产生的假目标与真实雷达目标回波差别分析   总被引:1,自引:0,他引:1  
在时域和频域上分析了真实雷达目标回波信号与DRFM产生的假目标信号之间的差别,给出了识别DRFM产生的假目标信号的充分条件,提出了在时域和频域上识别两种信号的方法.  相似文献   

14.
With concrete plans for long duration flight taking form a new impetus is lent to preparing man for this hostile and unnatural environment. Cramped conditions, isolation from family and loved ones, work stress, fear, and incompatibility with fellow crew, are but a few of the problems suffered by astronauts and cosmonauts during their long missions in orbit about the earth.

Although criteria for selection of crew is one aspect of attacking the problem, it has not solved it Notwithstanding good selection, team combination, and counselling before flight, problems have still occurred with unwanted consequences. Incompatibility of team members, far from being the exception, has been frequent. This has been detrímental both physiologically and psychologically for the individual as well as for the operational success and safety of the missions.

Because problems will inevitably occur in future long duration missions, especially when they are of international and multi-cultural nature, the importance of dealing with them is underlined. This paper takes a different approach towards ameliorating these problems, namely that of psychological group training before a mission.  相似文献   


15.
Future piloted missions to explore asteroids, Mars, and other targets beyond the Moon will experience strict limitations on communication between vehicles in space and control centers on Earth. These limitations will require crews to operate with greater autonomy than any past space mission has demonstrated. The Antarctic Search for Meteorites (ANSMET) project, which regularly sends small teams of researchers to remote parts of the southern continent, resembles a space mission in many ways but does not rely upon a control center. It provides a useful crew autonomy model for planners of future deep space exploration missions. In contrast to current space missions, ANSMET gives the crew the authority to adjust competing work priorities, task assignments, and daily schedules; allows the crew to be the primary monitor of mission progress; demands greater crew accountability for operational errors; requires the crew to make the most of limited communication bandwidth; adopts systems designed for simple operation and failure recovery; and grants the crew a leading role in the selection and stowage of their equipment.  相似文献   

16.
17.
One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface.

The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means.

However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency.

The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc.

The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface.

The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing “Orlan” type suit.

The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.  相似文献   


18.
A P Nechaev 《Acta Astronautica》2001,49(3-10):271-278
Human error prevention is very important to support the safety and efficiency of human-machine systems. The approach to space crew member management error is considered in this paper. The data collected during 14 "Mir" station missions were analyzed to substantiate this approach. As a result of data processing, the significant (p<0.05) correlation of crew member errors with work and rest schedule tensity has been revealed. This finding was used to work out the mathematical model describing the dependence between the frequency (the probability) of crew member errors and work and rest schedule tensity. Based on the model, the algorithm of error management by means of efficient planning of crew members' work has been developed. The suggested approach may be used equally with other methods to raise the reliability of human-operator performance. Grant numbers: NAS-15-10110.  相似文献   

19.
《Acta Astronautica》2007,60(4-7):254-258
Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123–127 [5]]. Changes in T- and B-mediated activities of the immune system were demonstrated during and after space flight. However, the influence of the space flight conditions on the allergic status of cosmonauts and astronauts is still unclear. The goal of this investigation was to analyze total blood IgE levels, specific IgE-antibodies and interleukin-4 in blood of Russian crew members before and after space flights to the International Space Station (ISS) and during a long-term isolation study. For this purpose, we used the ELISA assays as well as other special kits. It was noticed that four out of nine cosmonauts had high total serum IgE (more than normal clinical values of 120 IU/ml). At the same time, there were no statistically significant changes in serum IgE levels before and after long-term space flights (128–195 days). A similar situation was observed regarding preflight IgE levels of cosmonauts who performed short-term flights (7–11 days). However, seven out of 11 cosmonauts had increased IgE level in blood post short flights as compared with pre-flight values. We also measured specific IgE-antibodies, because their high concentration may cause the increased production of total IgE indicating sensitization of cosmonauts. This becomes more important when humans spend a longer time in the closed environment of a space vehicle. Also our ground-based investigations showed that a stay in such conditions does not enhance sensitization to allergens (total number of tested allergens 27) including food, inhalants and cross-reactive proteins. Serum interleukin-4 level measured after short- and long-term space flights was identical. A linear correlation between levels of immunoglobulin E and interleukin-4 also was not significant. Despite the fact that our investigations did not establish any influence of space flight on sensitization and development of immediate-type allergic reactions, they demonstrated the necessity to control the allergic status of cosmonauts very carefully both before and after space flights. At the same time, it is necessary to pay special attention to outcomes of atopic individuals with high pre-flight level of total blood IgE.  相似文献   

20.
为了解决时域校正走动带来的方位空变性问题,提出了一种在方位多普勒域走动校正的斜视合成孔径雷达(SAR)成像算法。文中利用级数反演理论,将斜距公式展开至三次项,推导出SAR回波信号的两维频谱表达式。再从两维频谱出发,提出了基于两维频谱匹配滤波的斜视SAR成像算法。该算法考虑到距离空变性问题,提出先在两维频域进行走动校正和相位预滤波,接着在距离多普勒域进行线性频率变标的处理方法,经过距离脉压和方位脉压能够得到聚焦良好的SAR图像。此外,该方法与距离徙动(RMA)算法相比可以有效地降低需要处理的数据量。最后,临近空间SAR仿真实验证明本文提出方法的可行性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号