首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.  相似文献   

2.
Active flutter velocity enhancement scheme is presented for lifting surfaces, employing Linear Quadratic Gaussian based multi-input multi-output controller with multilayered piezoelectric actuators. To numerically test the developed concept, a composite plate wing, surface bonded with eight piezoelectric bender actuators and sensors has been considered. A modal flutter control model is formulated in state-space domain using coupled piezoelectric finite element procedures along with unsteady aerodynamics and optimal control theory. The bending – torsion flutter instability has been actively postponed from 44.13 to 55.5 m/s using the energy imparted by the multilayered piezoelectric actuators. As the power requirement by these actuators is comparatively very low with respect to stack actuators, they can be employed in an integrated form to develop active lifting surfaces for real time applications.  相似文献   

3.
A multiple model adaptive estimation (MMAE) algorithm is implemented with the fully nonlinear six-degree-of-motion, Simulation Rapid-Prototyping facility (SRF) VISTA F-16 software simulation tool. The algorithm is composed of a bank of Kalman filters modeled to match particular hypotheses of the real world. Each presumes a single failure in one of the flight-critical actuators, or sensors, and one presumes no failure. For dual failures, a hierarchical structure is used to keep the number of on-line filters to a minimum. The algorithm is demonstrated to be capable of identifying flight-critical aircraft actuator and sensor failures at a low dynamic pressure (20,000 ft, 0.4 Mach). Research includes single and dual complete failures. Tuning methods for accommodating model mismatch, including addition of discrete dynamics pseudonoise and measurement pseudonoise, are discussed and demonstrated. Scalar residuals within each filter are also examined and characterized for possible use as an additional failure declaration voter. An investigation of algorithm performance off the nominal design conditions is accomplished as a first step towards full flight envelope coverage  相似文献   

4.
The development and performance of moving-bank multiple model adaptive control (MMAC) algorithms for quelling vibrations induced in the SPICE 2 space structure are presented. The structure consists of a large platform and a smaller platform connected by three legs in a tripod fashion. Deviations of the line-of-sight (LOS) vector from the center of the large platform to the center of the smaller platform are used for LQG controller performance evaluation. The parameter estimator implements the maximum entropy with identity covariance (ME/I) algorithm; the moving-bank logic employs parameter position monitoring; the controller uses the modified MMAC method. Whereas parameter variations of two percent caused instabilities in the single filter/controller design, the MMAC algorithm provides an excellent method to estimate a wide range of parameter variations and to quell oscillations in the structure  相似文献   

5.
A new approach for the placement of sensors and actuators in the active control of flexible space structures is developed. The approach converts the discrete nature of sensor and actuator positioning problems to a nonlinear programming optimization through approximation of the control forces and output measurements by spatially continuous functions. The locations of the sensors and actuators are optimized in order to move the transmission zeros of the system further to the left of the imaginary axis. This criterion for sensor/actuator placement can be useful for optimal regulation and tracking problems, as well as for low authority controller designs. Two performance metrics are considered for the optimization and are applied to the sensor/actuator positioning of a large-order flexible space structure  相似文献   

6.
Smart structures with nerves of glass   总被引:4,自引:0,他引:4  
Aircraft and space platforms in the 21st century will probably be smart structures capable of sensing both their state and their environment. Networks of optical fibres will constitute an effective nervous system collecting sensory information from structurally integrated arrays of fibre optic sensors associated with each structural component. It is expected that the structural integrity of these smart structures would be monitored throughout their life. During manufacture and installation their built-in sensors would check for flaws or mishandling and therefore provide quality control. In operation their stress and thermal history would be constantly monitored to warn of impact damage, excessive loading or the onset of fatigue. These intelligent damage assessment systems could make obsolete the catastrophic failures that sometimes plague our aircraft, trains and cars today and lead to a revolution in engineering ethics. Structurally integrated optical fibre sensors could also provide the strain, displacement and deformation information required for many control situations. In some of these instances optical control signals might counterstream along these same optical paths to arrays of actuators. In the case of advanced aircraft real time monitoring of the aerodynamic load distribution combined with the extremely fast flight control made possible with distributed arrays of small actuators might permit the aircraft to respond instantly to turbulence. Another potential application is shape sensing and vibration monitoring for dynamic control of large space structures.  相似文献   

7.
A moving-bank multiple model estimator/controller (MMAE/MMAC) based on linear system, quadratic cost, and Gaussian noise (LQG) assumptions is used to quell unwanted vibrations in a simulated large flexible space structure. The structure, known as the Space Integrated Controls Experiment (SPICE), exists at Phillips Laboratory, Kirtland Air Force Base, New Mexico. The structure consists of a large platform and a smaller platform connected by a tripod of flexible legs. The purpose of the control system is to maintain a very precise line-of-sight (LOS) vector through the center of the spacecraft. Kalman filtering, used to estimate the position and velocity of the bending modes of the structure, and LQG control techniques are the primary design tools used in the MMAE/MMAC algorithms. Implementing a parallel bank of filters increases robustness when uncertainties exist in the system model, here specifically allowing adaptation to uncertain and changing undamped natural frequencies of the bending modes of the structure. A moving-bank algorithm is utilized to reduce the computational loading. The MMAE/MMAC design provides a well-suited method of estimating variations in the vector of undamped natural frequencies and quelling vibrations in the structure. The MMAE/MMAC was able to track numerous parameter changes and jumps while providing adequate control for the structure.  相似文献   

8.
《中国航空学报》2021,34(3):25-38
The attenuation of spatially evolving instability Tollmien-Schlichting (T-S) waves in the boundary layer of a flat plate with zero pressure gradients using an active feedback control scheme is theoretically and numerically investigated. The boundary layer is excited artificially by various perturbations to create a three-dimensional field of instability waves. Arrays of actuators and sensors are distributed locally at the wall surface and connected together via a feedback controller. The key elements of this feedback control are the determination of the dynamic model of the flat plate boundary layer between the actuators and the sensors, and the design of the model-based feedback controller. The dynamic model is established based on the linear stability calculation which simulates the three-dimensional input-output behaviour of the boundary layer. To simplify the control problem, an uncoupled control mode of the dynamic model is made to capture only those dynamics that have greatest influences on the input-output behaviour. A Proportional-Integral-Derivative (PID) controller, i.e. a lead-lag compensator, combining with a standard Smith predictor is designed based on the system stability criterion and the specifications using frequency-response methods. Good performance of the feedback control with the uncoupled control mode is demonstrated by the large reduction of the three-dimensional disturbances in the boundary layer. This simple feedback control is realistic and competitive in a practical implementation of T-S wave cancellation using a limited number of localised sensors and actuators.  相似文献   

9.
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.  相似文献   

10.
A novel control technique, termed control redistribution, is presented and applied in conjunction with multiple model adaptive estimation (MMAE) to the variable in-night stability test aircraft (VISTA) F-16, to detect and compensate for sensor and/or actuator failures. This ad hoc method redistributes control commands (that would normally be sent to failed actuators) to the nonfailed actuators, accomplishing the same control action on the aircraft. Dither is considered to help disambiguate failures in the longitudinal and lateral-directional channels. Detection of both single-actuator and single-sensor failures is considered. Failures are demonstrated detectable in less than 1 s, with an aircraft output nearly identical to that anticipated from a fully functional aircraft in the same environment  相似文献   

11.
The problem of controller design for flexible spacecraft is addressed. Model-based compensators, which rely on the knowledge of the system parameters to tune the state estimator, are first considered, and are shown to have high sensitivity to parameter uncertainties. Three types of dissipative controllers, which use collocated actuators and sensors, are next considered. These controllers guarantee stability in the presence of unmodeled elastic modes and parameter uncertainties. A procedure is given for designing an optimal dissipative dynamic compensator, which can provide better performance while still retaining robust stability  相似文献   

12.
在执行任务过程中,无人机的传感器、作动器等均可能出现故障。文章针对常规布局无人机的作动器故障,提出了 1种反步法和控制分配相结合的容错控制方法。首先,建立无人机数学模型,并对作动器故障进行分类和建模;然后,根据模型设计反步最优控制器和基于控制分配的容错控制器;最后,通过仿真验证表明,所设计的容错控制方法能够实现作动器故障下的姿态快速稳定控制,且稳定性好,基本无侧滑角,各操纵面均在约束范围内,达到容错控制要求。  相似文献   

13.
含脱胶压电传感器/驱动器的智能结构的有限元分析   总被引:1,自引:0,他引:1  
将压电传感器、驱动器粘贴在复合材料结构的表面可实现结构的振动主动控制 ,但若传感器、驱动器部分脱开会对结构的静、动态特性产生显著影响。建立了一个新的加强假定应变压电固体单元 ,用于压电自适应层合结构振动主动控制的模拟仿真。与现有的压电固体单元相比 ,所建单元性能更优越 ,精度和计算效率更高 ,并能用于壳体结构的分析。采用相同坐标值但不同的节点号的方法模拟脱层 ,利用该单元分析了传感器、驱动器脱开对结构动力学特性的影响。  相似文献   

14.
《中国航空学报》2016,(3):789-798
This paper presents an integrated fuzzy controller design approach to synchronize a dis-similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu-ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi-tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance.  相似文献   

15.
变循环发动机完全分布式控制   总被引:1,自引:1,他引:1  
采用分布式控制架构可以降低变循环发动机控制系统的重量并有利于系统的开发和扩展。提出了一种完全分布式控制架构,控制算法的计算完全分布到智能执行机构中,计算所需的参数值由智能传感器通过串行数据总线发送到智能执行机构。变循环发动机完全分布式控制系统研发的主要工作是设计分散控制算法和总线通信方案。将控制回路的耦合当作总扰动的一部分,使用线性自抗扰控制器(ADRC)观测并在控制信号中消除总扰动,实现了分散控制。在CAN总线硬件的基础上,使用CANaerospace高层协议设计了时间触发的总线通信方案。从而实现了变循环发动机完全分布式控制。在MATLAB/Simulink环境下使用TrueTime工具箱搭建了仿真系统。使用TrueTime Kernel模块仿真智能执行机构与智能传感器的计算单元,使用TrueTime Network模块仿真CAN总线,并且将线性ADRC和CANaerospace协议写入到计算单元中。仿真结果表明:所建立的变循环发动机完全分布式控制系统能够适应发动机进气状况和健康状况的大范围变化,具有较好的鲁棒性。  相似文献   

16.
王锋  唐国金  李道奎 《航空学报》2007,28(1):111-114
 针对结构振动控制问题,提出了一种考虑扰动输入/性能输出分布信息时作动/传感器的优化配置准则。在降维的模态坐标下建立状态空间形式的结构动力学方程,通过Lyapunov方程求解扰动和作动器的能控性Gramian矩阵,并利用矩阵奇异值分解获得扰动的能控性方向和作动器的能控性方向,通过同时最大化作动器对结构的作动能力以及作动器的能控性方向与扰动的能控性方向的一致性来确定作动器的最优位置。类似思想用于确定传感器的最优位置。以采用压电片为作动器的悬臂梁为例阐述了新准则的应用。  相似文献   

17.
 研究了在轨卫星姿态控制系统(ACS)发生可修复性故障状况下的集成故障诊断与容错控制。考虑执行机构和敏感器分别或同时出现故障,相应地分别或同时在姿态动力学和运动学方程引入控制有效性因子和测量有效性因子,利用二级卡尔曼滤波算法求解其值,以说明系统的控制以及测量的有效程度。采用统计假设检验通过其幅值变化判断系统是否存在故障,当故障发生时,引入重构容错控制器对原控制器进行补偿控制。建立卫星闭环姿态控制系统对算法进行了仿真验证,仿真结果表明该算法快速可靠,能够满足在轨卫星姿态控制系统故障状况下的性能要求。  相似文献   

18.
A modified derivation of nonlinear dynamic inversion provides the theoretical underpinnings for a reconfigurable control law for aircraft that have suffered combinations of actuator failures, missing effector surfaces, and aerodynamic changes. The approach makes use of acceleration feedback to extract information pertaining to any aerodynamic change and thus does not require a complete aerodynamic model of the aircraft. The control law does require feedback of effector positions to accommodate actuator dynamics. Both accelerometer and rate gyro failure detection and isolation (FDI) systems are implemented, allowing up to three independent failures for each FDI system as long as they are in different axes. Nonlinear simulation results show that the FDI systems improve the robustness to accelerometer/rate gyro uncertainties. An advanced tailless aircraft model is used to demonstrate the concepts. The simulation includes accelerometer and rate gyro noise and bias, failures due to accelerometers, rate gyros, and actuators, and modeled missing surfaces that cause airplane aerodynamic changes  相似文献   

19.
智能结构模糊振动控制的在环仿真   总被引:1,自引:0,他引:1  
提出了采用压电材料作为传感器和驱动器,基于模糊逻辑的柔性结构主动振动控制方法,并在嵌入式微处理器上实现模糊控制策略.柔性智能梁结构为例,以单片机为控制器,采用数值方法在计算机上模拟柔性结构模型,利用计算机与单片机的串行通讯技术实现了梁结构振动控制的硬件在环仿真,并编制出良好的人机界面和硬件接口程序.仿真结果表明本文提出的模糊控制方法能够很好的实现对智能梁结构的振动抑制.  相似文献   

20.
针对多模自适应(MMAE)故障检诊(FDD)方法的局限性,提出了一种基于交互多模(IMM)估计策略的动态系统中多重故障的检诊方法。交互多模估计是针对包含有结构以及参数的系统的一种效率较好的自适应估计技术,它提供了故障检测、诊断和状态估计的集中框架。通过对在传感器和作动器中含有多个故障飞机的仿真。结果表明,所提供的方法比其它方法能够更快、更可靠地检测和隔离出多重故障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号