首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has become increasingly clear that the enhanced space radiation environment associated with solar activity can play havoc with satellite systems. An important special case of this problem concerns precise timekeeping among orbiting communications satellites, where the loss of synchronization can mean the loss of communications. Here, we discuss one satellite system's solution to this problem, where radiation-sensitive spacecraft crystal oscillators are "slaved" to radiation-insensitive spacecraft atomic clocks.  相似文献   

2.
On February 8, 1969, an experimental tactical communications satellite, TACSAT I, was successfully placed in synchronous orbit at the equator off the coast of South America. This paper concerns itself with a family of SHF tactical satellite communications ground terminals utilizing the SHF capability of that satellite. The material presented provides the system concepts necessary for the understanding of the ground terminals, their relationship to the satellite, and some insight into the design problems encountered during the development of a family of five types of terminals. The system concepts are presented in terms of communication modes, frequency assignments, and implementation of the respective modes. The beacon system for frequency control and signal acquisiticn siticn is described along with the factors involved in design of equipment implementing the analog FM, the alert message, frequency hopping, and, differential phase-shift keyed (DPSK) modes. The final configurations of each of the five terminals are described and illustrated through photographs and generalized block diagrams, and the capability of each is briefly outlined.  相似文献   

3.
This paper presents an overview of the development of aeronautical mobile satellite services (AMSS) over the past 30 years. The inherent shortcomings of present air-ground HF communications have hindered the development of civil aviation, but according to the Future Air Navigation Systems (FANS) concept aeronautical satellite communication-including Automatic Dependent Surveillance (ADS)-will be the key to eliminating the shortcomings of HF communication systems. Satellite-based communication and surveillance will significantly improve air traffic control (ATC) over the oceanic and remote terrestrial airspace, and it will benefit civil aviation authorities, airlines as well as passengers. This paper discusses the availability of system elements, and world wide trials, demonstrations and preoperational use of aeronautical satellite communications over past years are described. Future satellite systems possible for aeronautical communications are also discussed  相似文献   

4.
A highly reliable and economical system design is presented for a multiport amplifier (MPA) system, which has attracted considerable attention for its potential use in multibeam mobile satellite communications. An MPA is composed of multiple input/output ports and an array of multiple high-power amplifier (HPAs). Since the HPAs are shared among multiple beams, this design solves the problems of traffic imbalance among beams, traffic changes due to terminal movement, and changes in propagation conditions, and can efficiently utilize the total transmitting power with maximum flexibility and minimum hardware. The problem is that HPA failures degrade the MPA beam isolation, causing multipath interference in the surrounding area due to leakage through adjacent beams. To address this problem, we investigated the MPA performance and survival probability when HPAs fail, by taking the specific properties of the MPA configuration into account. Based on our analysis, we found that there is an optimum operational HPA on/off mode in the event of HPA failure, and we were able to obtain optimal performance and reliability by reconfiguring the HPA on/off states in orbit upon the occurrence of HPA failures. Our proposed self-redundant, reconfigurable MPA can achieve high reliability without any need for additional redundant units or switches.  相似文献   

5.
The concept of meridian orbits is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number (>1) of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200-km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage  相似文献   

6.
This paper deals with the design parameters of a communications satellite which would be capable of providing domestic telephony, data, and television distribution services. Certain important aspects of the design are discussed, including satellite antenna beam coverage, transponder bandwidth, and transponder radiated power for a given weight range. A baseline satellite design is then presented which has 24 transponders (with 4000 watts radiated power on-axis and 34-MHz radio-frequency bandwidth) fully accessible from the 48 contiguous United States. The design uses crossed linear polarization to reuse the satellite transmit and receive frequency spectrum.  相似文献   

7.
The modern digital computer is rapidly permeating all areas of our highly industrialized society-from agriculture to education-from process control to zoology. Printing and publishing and allied fields involved in graphic communications have been changing rapidly in this decade as the digital computer and associated peripheral devices have made rapid inroads in the graphic communications process. This paper describes the nature of the impact which the digital computer has had, and is making, upon today's graphic communications, particularly upon the editing and composition functions. A prediction of future impact is also presented.  相似文献   

8.
Predicting the visibility of LEO satellites   总被引:2,自引:0,他引:2  
We present a simple algorithm to determine the visibility-time function of a circular low Earth orbit (LEO) satellite at a terminal on the Earth's surface. The simplicity of the algorithm is based on approximating the ground trace of the satellite (which is not a great circle due to Earth's rotation) during a time interval of the order of in-view period, by a great-circle are. This enables us to use spherical geometry to compute the location and time epoch of the observation of the closest approach of the satellite's ground trace to the terminal. This is also the epoch of the observation of the maximum elevation angle from the terminal to the satellite. Applying a result derived relating the maximum elevation angle to the in-view period, we obtain the visibility-time function of the satellite at the terminal. Numerical results illustrate the accuracy of the algorithm for a wide range of LEO orbit altitudes  相似文献   

9.
In this paper,a Doppler scaling fast Fourier transform (Doppler-FFT) algorithm for filter bank multi-carrier (FBMC) is proposed,which can efficiently eliminate the impact of the Doppler scaling in satellite communications.By introducing a Doppler scaling factor into the butterfly structure of the fast Fourier transform (FFT) algorithm,the proposed algorithm eliminates the differences between the Doppler shifts of the received subcarriers,and maintains the same order of computational complexity compared to that of the traditional FFT.In the process of using the new method,the Doppler scaling should be estimated by calculating the orbital data in advance.Thus,the inter-symbol interference (ISI) and the inter-carrier interference (ICI) can be completely eliminated,and the signal to interference and noise ratio (SINR) will not be affected.Simulation results also show that the proposed algorithm can achieve a 0.4 dB performance gain compared to the frequency domain equalization (FDE) algorithm in satellite communications.  相似文献   

10.
Worldwide maps of electron precipitation into the atmosphere can be obtained remotely with a unique separation of spatial and temporal variations by sensing from a satellite the bremsstrahlung X-rays produced in the atmosphere by the incident electrons. From X-ray measurements electron fluxes and energy spectra can be derived over a broad range of energies under both daytime and nighttime conditions. The technique was first demonstrated in 1972 and has now been used sucessfully in several programs. The most continuous and widespread coverage can clearly be achieved from high altitudes, but even at only a few hundred kilometers it has been possible to obtain mappings over a wide area since bremsstrahlung X-ray fluxes are often rather steady in time during the few minute duration of a low altitude satellite pass over the polar region. The satellite bremsstrahlung data already acquired have provided information on the long term morphology of the total fluxes and energy spectra of bremsstrahlung X-rays emitted from a large area and have shown that pronounced longitude structure commonly occurs in the X-ray emissions. The data have tended to be complementary in nature to that obtained by the more well established technique of measuring bremsstrahlung X-rays from balloons, whereby time variations can be studied in detail with more limited geographic coverage. From balloons it is known that the X-rays show a variety of time variations, but many of the faster microburst type phenomena have yet to be observed from satellites. The present status of satellite bremsstrahlung X-ray measurements is reviewed here, some of the key results summarized and suggestions made for future improvements in instrumentation. The review is limited to X-rays > 20 ke V and therefore to the associated precipitation of only the more energetic electrons.  相似文献   

11.
The Japanese Communications Satellite (CS), called Sakura, is a "Medium Capacity Communications Satellite for Experimental Purposes" and is the first experimental communications satellite in which 30/20 GHz bands were adopted and were developed for practical domestic use. Large scale field trials have been carried out for more than three years in order to evaluate 30/20 GHz (Ka-band) and 6/4 GHz (C-band) domestic satellite communications system technologies under actual operational conditions by using the CS Sakura launched in December 1977. Through the various experiments on Kand C-band large fixed and small transportable Earth station systems, satellite control experiments, and Ka-band propagation measurements, it has been verified that the medium capacity satellite communications system meets the design objectives.  相似文献   

12.
Technology drivers for commercial communications satellites are examined based on the efficient use of spacecraft mass which is to be accomplished by increasing the efficiency of the microwave power amplifiers and antenna feed systems used for communications satellites, such as the INTELSAT series. The history of the INTELSAT series of satellites, the late 1980s market and available technology, and future directions of development are considered. Emphasis is on multibeam solid-state antennas, microwave switch matrices, solid-state power amplifiers, and the use of several filter modes in one physical cavity. By using quasimonolithic solid state techniques in a class B amplification mode they have achieved 40-60% efficiencies, compared with 20% for the conventional travelling wavetube amplifiers. It is concluded that technology directed towards improving the economics of satellite communications will continue to be a major driver of future communications satellite payloads. Through their use and their extension, the authors foresee more than doubling the telephone channels per satellite from the current 80000 to perhaps 200000 by the turn of the century  相似文献   

13.
The geostationary tether satellite system expands the geostationary orbit resource from a one-dimensional arc into a two-dimensional disk. The tethered satellites, each several thousand kilometers apart and aligned along the local vertical, are stabilized at the altitude of the geosynchronous orbital speed. When this system is applied to communications systems, it is estimated that the number of satellites can be increased as much as thirteenfold and the communication capacity can be increased more than seventeenfold, compared with a conventional geostationary satellite orbit system  相似文献   

14.
The forthcoming 10 cm range tracking accuracy capability holds much promise in connection with a number of Earth and ocean dynamics investigations. These include a set of earthquake-related studies of fault motions and the Earth's tidal, polar and rotational motions, as well as studies of the gravity field and the sea surface topography which should furnish basic information about mass and heat flow in the oceans. The state of the orbit analysis art is presently at about the 10 m level, or about two orders of magnitude away from the 10 cm range accuracy capability expected in the next couple of years or so. The realization of a 10 cm orbit analysis capability awaits the solution of four kinds of problems, namely, those involving orbit determination and the lack of sufficient knowledge of tracking system biases, the gravity field, and tracking station locations. The Geopause satellite system concept offers promising approaches in connection with all of these areas. A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 Earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit s, in this sense, at the geopotential boundary, i.e., the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analyses and accelerometers. The Geopause satellite system also provides the tracking geometery and coverage needed for determining the orbit, the tracking system biases and the station locations. Studies indicate that the Geopause satellite, tracked with a 2 cm ranging system from nine NASA affiliated sites, can yield decimeter station location accuracies. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. This means not only that redundant data are available for determining tracking system biases, but also that both components of the polar motion can be observed frequently. When tracking Geopause, the NASA sites become a two-hemisphere configuration which is ideal for a number of Earth physics applications such as the observation of the polar motion with a time resolution of a fraction of a day. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography. Geopause tracking a coplanar, drag-free satellite for two months to 0.03 mm per second accuracy can yield the geoid over the entire Earth to decimeter accuracy with 2.5° spatial resolution. Two Geopause satellites tracking a coplanar altimeter satellite can then yield ocean surface heights above the geoid with 7° spatial resolution every two weeks. These data will furnish basic boundary condition information about mass and heat flows in the oceans which are important in shaping weather and climate.  相似文献   

15.
A preliminary analysis of the capacity (number of aircraft) that could be handled by the first generation American Mobile Satellite Corporation (AMSC) system in the early part of the 21st century is reported. The analysis is based on assumptions for the service demand, the Aeronautical Telecommunication Network (ATN), the communications scheme, the satellite channel and the aircraft Earth station. Capacity is examined in terms of spectral bandwidth required and satellite power limitations. The sensitivity of the results is examined with regard to variations in service demand; spectral efficiencies of different modulation techniques; aircraft antenna equipage, high-gain or low-gain; and the amount of overhead associated with the ATN. With regard to the ATN, the analysis only illustrates the impact on capacity if some of the ATN overhead were eliminated. The feasibility of eliminating this overhead and the possible resulting loss of functionality are not addressed  相似文献   

16.
The issue of meeting the higher communications requirements of future aircraft avionics systems in an incremental manner is addressed. A communications architecture is proposed which is based upon a switched network technology from the telecommunications area asynchronous transfer mode (ATM). However, the major step of migrating all existing avionics equipment into an ATM compliant form is avoided by the process of “emulating” a current avionics data bus such as MIL-STD-1553B over an ATM network. This allows current 1553 subsystems to co-exist with ATM compliant equipment on a single physical ATM network  相似文献   

17.
针对传统跟踪与数据中继卫星系统(TDRSS)中S波段多址(SMA)业务直接序列扩频码分多址(DS-CDMA)的缺点,提出采用多载波码分多址(MC-CDMA)进行替代的调制解调方案,对其系统结构和在TDRSS中应用需解决的关键技术问题进行了分析。MC-CDMA具有数据传输速率和频带利用率高,发送和接收设备简单等优点,在载人航天通信中具有十分重要的应用价值。  相似文献   

18.
宽带信号广泛应用于雷达、导航和卫星通讯等领域。宽带信号的传统接收处理方法主要是采用匹配滤波或子带分割技术。本文用去斜脉冲压缩处理方法处理宽带信号,给出了具体的实现结构和改进措施,分析了如何选择系统的信号采样频率,同时还给出了脉压波形的仿真结果及性能分析。实验表明:对中心频率为9.5GHz、带宽1.3GHz、脉冲宽度30μs的宽带线性调频信号,采用该方法处理只需90MHz采样数据率,大大降低了数据采集的难度。  相似文献   

19.
20.
Our understanding of the composition, density, and temperature structure of the outer plasmasphere has undergone several major revisions since the discovery of the plasmasphere over 35 years ago. Each new era of understanding was brought about by the launching of satellites carrying suites of plasma diagnostic experiments each more sophisticated than its predecessor. Instead of each new generation of missions providing incremental advancement in our knowledge of the plasmasphere's plasma properties, they most often than not, initiated a complete re-thinking of our understanding. There are still a number of observational "puzzles" and large gaps in our knowledge of how plasmaspheric structure and plasma properties change with geomagnetic storm and substorm activity. As we develop new missions to attempt to globally image the outer plasmasphere in order to put simultaneous multi-spacecraft observations into context, we undoubtedly will uncover new tantalizing observations that will cause us to re-think our mental picture of the plasmasphere. What we have learned from satellite data about the chemical composition, density, temperature and pitch-angle distribution properties and their variability is outlined in this review paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号