首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryan  James M. 《Space Science Reviews》2000,93(3-4):581-610
Long-duration solar -ray flares are those in which high-energy photon emission is present well beyond the impulsive phase, indicating the presence of either stored or continuously accelerated ions. We review both the observations and the current theories or models that can explain this unusual phenomenon. The present situation favors either acceleration of protons and ions for long periods of time by second order Fermi acceleration in large coronal loops or acceleration in large-scale, CME-associated reconnection sheets. Observations in the upcoming solar maximum may resolve this problem.  相似文献   

2.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   

3.
We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.  相似文献   

4.
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.  相似文献   

5.
Several examples of the radio emission of eruptive solar flares with high-frequency slowly drifting structures and type II bursts are presented. Relationships of these radio bursts with eruptive phenomena such as soft X-ray plasmoid ejection and shock formation are shown. Possible underlying physical processes are discussed in the framework of the plasmoid ejection model of eruptive solar flares. On the other hand, it is shown that these radio bursts can be considered as radio signatures of eruptive solar flares and thus used for the prediction of heliospheric effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Some solar flares are known to drive seismic waves into the sub-photospheres of the magnetic regions that host them. Sunquakes, which are identified as a wave-packet of ripples are observed on the solar surface emanating from a focal region, known as seismic source or sometimes as a transient. Not all seismic transients from flares generate sunquakes. How these are produced is still a puzzle. In this paper, I will give an overview of the observed properties of sunquakes and efforts to understanding physics underlying them, including numerical modelling of flare-driven oscillations.  相似文献   

7.
We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.  相似文献   

8.
We review the particular aspect of determining particle acceleration sites in solar flares and coronal mass ejections (CMEs). Depending on the magnetic field configuration at the particle acceleration site, distinctly different radiation signatures are produced: (1) If charged particles are accelerated along compact closed magnetic field lines, they precipitate to the solar chromosphere and produce hard X-rays, gamma rays, soft X-rays, and EUV emission; (2) if they are injected into large-scale closed magnetic field structures, they remain temporarily confined (or trapped) and produce gyrosynchrotron emission in radio and bremsstrahlung in soft X-rays; (3) if they are accelerated along open field lines they produce beam-driven plasma emission with a metric starting frequency; and (4) if they are accelerated in a propagating CME shock, they can escape into interplanetary space and produce beam-driven plasma emission with a decametric starting frequency. The latter two groups of accelerated particles can be geo-effective if suitably connected to the solar west side. Particle acceleration sites can often be localized by modeling the magnetic topology from images in different wavelengths and by measuring the particle velocity dispersion from time-of-flight delays.  相似文献   

9.
It is shown that solar flares and magnetospheric substorms must primarily be caused by a dynamo process, rather than magnetic reconnection – a spontaneous, explosive annihilation of magnetic energy stored prior to the onset. Magnetic energy in the vicinity of solar flares and in the magnetotail shows often an increase at their onset, not a decrease. It is unfortunate that many observed features of solar flares and substorms have tacitly been ascribed to unproven (3-D) characteristics of the neutral line for a long time. In the future, it is necessary to study carefully their driving process and examine how the driven magnetic field system evolves, leading to solar flares and substorms.  相似文献   

10.
High-energy X-rays and ??-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.  相似文献   

11.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   

12.
The Cepheid-like pulsations of some of the R CrB stars should in principle make it possible to determine their masses and hence to place constraints on possible evolution scenarios. We briefly review the evidence for these pulsations and discuss the problem of how these low-mass, hydrogen-deficient carbon stars could have evolved to their present position in the H-R diagram. Linear and nonlinear pulsation calculations are reviewed. It is found that for these large luminosity to mass ratio (L/M) stars a region of pulsation instability extends considerably hotter than for normal high luminosity Cepheids. The envelopes of these models are so nonadiabatic that the identification of modes becomes very difficult since there is frequently no clearly defined nodal structure. For the most extreme L/M cases it is found that the models are unstable in the sense that they appear on the verge of ejecting the outer layers.  相似文献   

13.
The possibility of remote diagnostics of coronal structures with impulsively-generated short-period fast magnetoacoustic wave trains is demonstrated. An initially broad-band, aperiodic fast magnetoacoustic perturbation guided by a 1D plasma inhomogeneity develops into a quasi-periodic wave train with a well-pronounced frequency and amplitude modulation. The quasi-periodicity results from the geometrical dispersion of the modes, determined by the transverse profile of the loop, and hence contains information about the profile. Wavelet images of the wave train demonstrate that their typical spectral signature is of a “crazy tadpole’’ shape: a narrow spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time, with a mean value of several seconds for typical coronal values. The period and the spectral amplitude evolution are determined by the steepness of the transverse density profile and the density contrast ratio in the loop, which offers a tool for estimation of the sub-resolution structuring of the corona.  相似文献   

14.
This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.  相似文献   

15.
R. P. Lin 《Space Science Reviews》2011,159(1-4):421-445
RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI??s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ?tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI??s pioneering ??-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and ??-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ??2 R??, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions??solar flares and associated fast coronal mass ejections (CMEs).  相似文献   

16.
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question. Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier elements don't settle out completely. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Varieties of Coronal Mass Ejections and Their Relation to Flares   总被引:1,自引:0,他引:1  
Most coronal mass ejections (CMEs) start as coronal storms which are caused by an opening of channels of closed field lines along the zero line of the longitudinal magnetic field. This can happen along any zero line on the Sun where the configuration is destabilized. If the opening includes a zero line inside an active region, one observes a chromospheric flare. If this does not happen, no flare is associated with the CME in the chromosphere, but the process, as well as the response in the corona (a Long Decay Event in X-rays) remains the same. The only difference between flare-associated and non-flare-associated CMEs is the strength of the magnetic field in the region of the field line opening. This can explain essentially all differences which have been observed between these two kinds of CMEs. However, there are obviously also other sources of CMEs, different from coronal storms: sprays (giving rise to narrow, pointed ejections), erupting interconnecting loops (often destabilized by flares), and growing coronal holes. This paper tries to summarize and interpret observations which support this general picture, and demonstrates that both CMEs and flares must be properly discussed in any study of solar-terrestrial relations.  相似文献   

18.
Bochsler  Peter 《Space Science Reviews》2001,97(1-4):113-121
Although coronal mass ejections have traditionally been thought to contribute only a minor fraction to the total solar particle flux, and although such events mainly occur in lower heliographic latitudes, the impressive spectacle of eruptions - observed with SOHO/LASCO even at times of solar minimum - indicates that an important part of the low-latitude solar corona is fed with matter and magnetic fields in a highly transient manner. Elemental and isotopic abundances determined with the new generation of particle instruments with high sensitivity and strongly enhanced time resolution indicate that, apart from FIP/FIT-fractionation, mass-dependent fractionation can also influence the replenishment of the thermal ion population of the corona. Furthermore, selective enrichment of the thermal coronal plasma with rare species such as 3He can occur. Such compositional features have until recently only been found in energetic particles from impulsive flare events. This review will concentrate on this and other aspects of the present solar maximum and conclude with some outlook on future investigations of near-terrestrial space climate (the generalized counterpart of ‘space weather’). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Reggiani  N.  Guzzo  M.M.  de Holanda  P.C. 《Space Science Reviews》2003,107(1-2):89-97
We analyze here how solar neutrino experiments could detect time fluctuations of the solar neutrino flux due to magnetohydrodynamics (MHD) perturbations of the solar plasma. We state that if such time fluctuations are detected, this would provide a unique signature of the Resonant Spin-Flavor Precession (RSFP) mechanism as a solution to the Solar Neutrino Problem. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Gibson  S.E. 《Space Science Reviews》2001,97(1-4):69-79
During the past few years, significant progress has been made in identifying the coronal sources of structures observed in the solar wind. This recent work has been facilitated by the relative simplicity and stability of structures during solar minimum. The challenge now is to continue to use coordinated coronal/solar wind observations to study the far more complicated and time-evolving structures of solar maximum. In this paper I will review analyses that use a wide range of observations to map out the global heliosphere and connect the corona to the solar wind. In particular, I will review some of the solar minimum studies done for the first Whole Sun Month campaign (WSM1), and briefly consider work in progress modeling the ascending phase time period of the second Whole Sun Fortnight campaign (WSF) and SPARTAN 201-05 observations, and the solar maximum third Whole Sun Month campaign (WSM3). In so doing I hope to demonstrate the increase in complexity of the connections between corona and heliosphere with solar cycle, and highlight the issues that need to be addressed in modeling solar maximum connections. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号