共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
Ralph L. McNutt Jr. Stefano A. Livi Reid S. Gurnee Matthew E. Hill Kim A. Cooper G. Bruce Andrews Edwin P. Keath Stamatios M. Krimigis Donald G. Mitchell Barry Tossman Fran Bagenal John D. Boldt Walter Bradley William S. Devereux George C. Ho Stephen E. Jaskulek Thomas W. LeFevere Horace Malcom Geoffrey A. Marcus John R. Hayes G. Ty Moore Mark E. Perry Bruce D. Williams Paul Wilson IV Lawrence E. Brown Martha B. Kusterer Jon D. Vandegriff 《Space Science Reviews》2008,140(1-4):315-385
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W. 相似文献
2.
B. H. Mauk J. B. Blake D. N. Baker J. H. Clemmons G. D. Reeves H. E. Spence S. E. Jaskulek C. E. Schlemm L. E. Brown S. A. Cooper J. V. Craft J. F. Fennell R. S. Gurnee C. M. Hammock J. R. Hayes P. A. Hill G. C. Ho J. C. Hutcheson A. D. Jacques S. Kerem D. G. Mitchell K. S. Nelson N. P. Paschalidis E. Rossano M. R. Stokes J. H. Westlake 《Space Science Reviews》2016,199(1-4):471-514
3.
The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission 总被引:1,自引:0,他引:1
B. H. Mauk D. K. Haggerty S. E. Jaskulek C. E. Schlemm L. E. Brown S. A. Cooper R. S. Gurnee C. M. Hammock J. R. Hayes G. C. Ho J. C. Hutcheson A. D. Jacques S. Kerem C. K. Kim D. G. Mitchell K. S. Nelson C. P. Paranicas N. Paschalidis E. Rossano M. R. Stokes 《Space Science Reviews》2017,213(1-4):289-346
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016. 相似文献
4.
S. Alan Stern 《Space Science Reviews》2008,140(1-4):3-21
NASA’s New Horizons (NH) Pluto–Kuiper Belt (PKB) mission was selected for development on 29 November 2001 following a competitive selection resulting from a NASA mission Announcement of Opportunity. New Horizons is the first mission to the Pluto system and the Kuiper belt, and will complete the reconnaissance of the classical planets. New Horizons was launched on 19 January 2006 on a Jupiter Gravity Assist (JGA) trajectory toward the Pluto system, for a 14 July 2015 closest approach to Pluto; Jupiter closest approach occurred on 28 February 2007. The ~400 kg spacecraft carries seven scientific instruments, including imagers, spectrometers, radio science, a plasma and particles suite, and a dust counter built by university students. NH will study the Pluto system over an 8-month period beginning in early 2015. Following its exploration of the Pluto system, NH will go on to reconnoiter one or two 30–50 kilometer diameter Kuiper Belt Objects (KBOs) if the spacecraft is in good health and NASA approves an extended mission. New Horizons has already demonstrated the ability of Principal Investigator (PI) led missions to use nuclear power sources and to be launched to the outer solar system. As well, the mission has demonstrated the ability of non-traditional entities, like the Johns Hopkins Applied Physics Laboratory (JHU/APL) and the Southwest Research Institute (SwRI) to explore the outer solar system, giving NASA new programmatic flexibility and enhancing the competitive options when selecting outer planet missions. If successful, NH will represent a watershed development in the scientific exploration of a new class of bodies in the solar system—dwarf planets, of worlds with exotic volatiles on their surfaces, of rapidly (possibly hydrodynamically) escaping atmospheres, and of giant impact derived satellite systems. It will also provide other valuable contributions to planetary science, including: the first dust density measurements beyond 18 AU, cratering records that shed light on both the ancient and present-day KBO impactor population down to tens of meters, and a key comparator to the puzzlingly active, former dwarf planet (now satellite of Neptune) called Triton which is in the same size class as the small planets Eris and Pluto. 相似文献
5.
6.
D. McComas F. Allegrini F. Bagenal P. Casey P. Delamere D. Demkee G. Dunn H. Elliott J. Hanley K. Johnson J. Langle G. Miller S. Pope M. Reno B. Rodriguez N. Schwadron P. Valek S. Weidner 《Space Science Reviews》2008,140(1-4):261-313
The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. To meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft. 相似文献
7.
B. Wilken W. I. Axford I. Daglis P. Daly W. GÜTTLER W. H. Ip A. Korth G. Kremser S. Livi V. M. Vasyliunas J. Woch D. Baker R. D. Belian J. B. Blake J. F. Fennell L. R. Lyons H. Borg T. A. Fritz F. Gliem R. Rathje M. Grande D. Hall K. KecsuemÉTY S. Mckenna-LAWLOR K. Mursula P. Tanskanen Z. Pu I. Sandahl E. T. Sarris M. Scholer M. Schulz F. SØRASS S. Ullaland 《Space Science Reviews》1997,79(1-2):399-473
The RAPID spectrometer (Research with Adaptive Particle Imaging Detectors) for the Cluster mission is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20–400 keV for electrons, 40 keV–1500 keV (4000 keV) for hydrogen, and 10 keV nucl-1–1500 keV (4000 keV) for heavier ions. Novel detector concepts in combination with pin-hole acceptance allow the measurement of angular distributions over a range of 180° in polar angle for either species. Identification of the ionic component (particle mass A) is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Details of the detection techniques and in-orbit operations are described. Scientific objectives of this investigation are highlighted by the discussion of selected critical issues in geospace. 相似文献
8.
Dennis C. Reuter S. Alan Stern John Scherrer Donald E. Jennings James W. Baer John Hanley Lisa Hardaway Allen Lunsford Stuart McMuldroch Jeffrey Moore Cathy Olkin Robert Parizek Harold Reitsma Derek Sabatke John Spencer John Stone Henry Throop Jeffrey Van Cleve Gerald E. Weigle Leslie A. Young 《Space Science Reviews》2008,140(1-4):129-154
The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA’s first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with SWIR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg) power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission. 相似文献
9.
G. L. Tyler I. R. Linscott M. K. Bird D. P. Hinson D. F. Strobel M. Pätzold M. E. Summers K. Sivaramakrishnan 《Space Science Reviews》2008,140(1-4):217-259
The New Horizons (NH) Radio Science Experiment, REX, is designed to determine the atmospheric state at the surface of Pluto and in the lowest few scale heights. Expected absolute accuracies in n, p, and T at the surface are 4?1019 m?3, 0.1 Pa, and 3 K, respectively, obtained by radio occultation of a 4.2 cm-λ signal transmitted from Earth at 10–30 kW and received at the NH spacecraft. The threshold for ionospheric observations is roughly 2?109 e??m?3. Radio occultation experiments are planned for both Pluto and Charon, but the level of accuracy for the neutral gas is expected to be useful at Pluto only. REX will also measure the nightside 4.2 cm-λ thermal emission from Pluto and Charon during the time NH is occulted. At Pluto, the thermal scan provides about five half-beams across the disk; at Charon, only disk integrated values can be obtained. A combination of two-way tracking and occultation signals will determine the Pluto system mass to about 0.01 percent, and improve the Pluto–Charon mass ratio. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. Implementation of REX required realization of a new CIC-SCIC signal processing algorithm; the REX hardware implementation requires 1.6 W, and has mass of 160 g in 520 cm3. Commissioning tests conducted after NH launch demonstrate that the REX system is operating as expected. 相似文献
10.
The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
G. Bruce Andrews Thomas H. Zurbuchen Barry H. Mauk Horace Malcom Lennard A. Fisk George Gloeckler George C. Ho Jeffrey S. Kelley Patrick L. Koehn Thomas W. LeFevere Stefano S. Livi Robert A. Lundgren Jim M. Raines 《Space Science Reviews》2007,131(1-4):523-556
The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast
Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components
of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions
of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small
footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments. 相似文献
11.
M. Horányi V. Hoxie D. James A. Poppe C. Bryant B. Grogan B. Lamprecht J. Mack F. Bagenal S. Batiste N. Bunch T. Chanthawanich F. Christensen M. Colgan T. Dunn G. Drake A. Fernandez T. Finley G. Holland A. Jenkins C. Krauss E. Krauss O. Krauss M. Lankton C. Mitchell M. Neeland T. Reese K. Rash G. Tate C. Vaudrin J. Westfall 《Space Science Reviews》2008,140(1-4):387-402
The Student Dust Counter (SDC) experiment of the New Horizons Mission is an impact dust detector to map the spatial and size distribution of dust along the trajectory of the spacecraft across the solar system. The sensors are thin, permanently polarized polyvinylidene fluoride (PVDF) plastic films that generate an electrical signal when dust particles penetrate their surface. SDC is capable of detecting particles with masses m>10?12 g, and it has a total sensitive surface area of about 0.1 m2, pointing most of the time close to the ram direction of the spacecraft. SDC is part of the Education and Public Outreach (EPO) effort of this mission. The instrument was designed, built, tested, integrated, and now is operated by students. 相似文献
12.
S. A. Stern H. A. Weaver J. R. Spencer H. A. Elliott the New Horizons Team 《Space Science Reviews》2018,214(4):77
The central objective of the New Horizons prime mission was to make the first exploration of Pluto and its system of moons. Following that, New Horizons has been approved for its first extended mission, which has the objectives of extensively studying the Kuiper Belt environment, observing numerous Kuiper Belt Objects (KBOs) and Centaurs in unique ways, and making the first close flyby of the KBO 486958 2014 MU69. This review summarizes the objectives and plans for this approved mission extension, and briefly looks forward to potential objectives for subsequent extended missions by New Horizons. 相似文献
13.
14.
G. Klingelhöfer J. Brückner C. D’uston R. Gellert R. Rieder 《Space Science Reviews》2007,128(1-4):383-396
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample.
For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander
PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements
on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist
of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various
element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with
known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface
and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate
thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated
APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko. 相似文献
15.
Overview of the New Horizons Science Payload 总被引:2,自引:0,他引:2
H. A. Weaver W. C. Gibson M. B. Tapley L. A. Young S. A. Stern 《Space Science Reviews》2008,140(1-4):75-91
The New Horizons mission was launched on 2006 January 19, and the spacecraft is heading for a flyby encounter with the Pluto system in the summer of 2015. The challenges associated with sending a spacecraft to Pluto in less than 10 years and performing an ambitious suite of scientific investigations at such large heliocentric distances (>32 AU) are formidable and required the development of lightweight, low power, and highly sensitive instruments. This paper provides an overview of the New Horizons science payload, which is comprised of seven instruments. Alice provides moderate resolution (~3–10 Å FWHM), spatially resolved ultraviolet (~465–1880 Å) spectroscopy, and includes the ability to perform stellar and solar occultation measurements. The Ralph instrument has two components: the Multicolor Visible Imaging Camera (MVIC), which performs panchromatic (400–975 nm) and color imaging in four spectral bands (Blue, Red, CH4, and NIR) at a moderate spatial resolution of 20 μrad/pixel, and the Linear Etalon Imaging Spectral Array (LEISA), which provides spatially resolved (62 μrad/pixel), near-infrared (1.25–2.5 μm), moderate resolution (λ/δ λ~240–550) spectroscopic mapping capabilities. The Radio Experiment (REX) is a component of the New Horizons telecommunications system that provides both radio (X-band) solar occultation and radiometry capabilities. The Long Range Reconnaissance Imager (LORRI) provides high sensitivity (V<18), high spatial resolution (5 μrad/pixel) panchromatic optical (350–850 nm) imaging capabilities that serve both scientific and optical navigation requirements. The Solar Wind at Pluto (SWAP) instrument measures the density and speed of solar wind particles with a resolution ΔE/E<0.4 for energies between 25 eV and 7.5 keV. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) measures energetic particles (protons and CNO ions) in 12 energy channels spanning 1–1000 keV. Finally, an instrument designed and built by students, the Venetia Burney Student Dust Counter (VB-SDC), uses polarized polyvinylidene fluoride panels to record dust particle impacts during the cruise phases of the mission. 相似文献
16.
Edwards Christopher S. Christensen Philip R. Mehall Greg L. Anwar Saadat Tunaiji Eman Al Badri Khalid Bowles Heather Chase Stillman Farkas Zoltan Fisher Tara Janiczek John Kubik Ian Harris-Laurila Kelly Holmes Andrew Lazbin Igor Madril Edgar McAdam Mark Miner Mark O’Donnell William Ortiz Carlos Pelham Daniel Patel Mehul Powell Kathryn Shamordola Ken Tourville Tom Smith Michael D. Smith Nathan Woodward Rob Weintraub Aaron Reed Heather Pilinski Emily B. 《Space Science Reviews》2021,217(7):1-37
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are... 相似文献
17.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献
18.
H. M. Fischer J. D. Mihalov L. J. Lanzerotti G. Wibberenz K. Rinnert F. O. Gliem J. Bach 《Space Science Reviews》1992,60(1-4):79-90
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit. 相似文献
19.
John L. Campbell Glynis M. Perrett Ralf Gellert Stefan M. Andrushenko Nicholas I. Boyd John A. Maxwell Penelope L. King Céleste D. M. Schofield 《Space Science Reviews》2012,170(1-4):319-340
The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s–100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process. 相似文献
20.
The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission 总被引:1,自引:0,他引:1
S. Barabash R. Lundin H. Andersson K. Brinkfeldt A. Grigoriev H. Gunell M. Holmström M. Yamauchi K. Asamura P. Bochsler P. Wurz R. Cerulli-Irelli A. Mura A. Milillo M. Maggi S. Orsini A. J. Coates D. R. Linder D. O. Kataria C. C. Curtis K. C. Hsieh B. R. Sandel R. A. Frahm J. R. Sharber J. D. Winningham M. Grande E. Kallio H. Koskinen P. Riihelä W. Schmidt T. Säles J. U. Kozyra N. Krupp J. Woch S. Livi J. G. Luhmann S. McKenna-Lawlor E. C. Roelof D. J. Williams J.-A. Sauvaud A. Fedorov J.-J. Thocaven 《Space Science Reviews》2006,126(1-4):113-164
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize
the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging
and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron
spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60
keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products
(secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral
Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV)
and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique.
The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy
range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180∘ of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a
cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components
H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit
(DPU). 相似文献