首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Spherical detonations have been initiated by solid explosive (Tetryl) charges in well-mixed stoicheiometric air mixtures with each of the hydrocarbons, ethane, propane, n-butane, isobutane and ethylene at atmospheric pressure. Prior to initiation, the gases were contained in plastic bags; total gas volume and available path length were up to 1.6 m3 and 2 m, respectively. The detonations were shown to be self-sustained by continuous measurement of detonation velocity using X-band microwave interferometry. Measured detonation velocities were in all cases close to calculated C-J values.In a few experiments close to the limits of detonability, velocity and blast pressure/time records indicated that the propagating wave system is sometimes irregular. The irregularity that occurs just after initiation is characterised by a reaction front velocity very much lower than the constant detonation velocity, but subsequently attaining the latter by an acceleration process. These observations indicate the existence of a dissociated phase in which shock and reaction fronts may no longer be coupled.Because similar experimental conditions were used throughout, it was possible to establish the relative susceptibilities of the various fuel gases to detonation. Comparison is made with the Zeldovich criterion and a detonation kernel theory of Lee.  相似文献   

2.
The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer–Meshkov instability (RMI) and Kelvin–Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier–Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer–Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.  相似文献   

3.
In the present paper, we study the problem of detonation in unconfined, gaseous mixtures of methane/oxygen/nitrogen. A numerical simulation approach is employed in which we use a one-dimensional (spherical symmetry), time-dependent computer model to simulate the coupled compressible fluid dynamics-chemical kinetics processes which occur upon direct initiation of detonation. We establish the magnitude of explosive yield of tetryl required to initiate detonation in mixtures of CH4 + 2O2 with varying degrees of nitrogen dilution, up to and including stoichiometric . The numerical simulations illustrate the features of direct initiation observed in many experimental investigations, e.g. shock-wave breakaway followed by detonation reestablishment via a quasi-steady, oscillatory flow regime which occurs before the establishment of a steadily propagating spherical detonation. Our results compare well with recent experimental data obtained by Bull et al. (1976) over the range of tetryl masses studied by them. We find that tetryl explosive masses in excess of 107 grams would be required to initiate detonation in an unconfined, stoichiometric mixture.  相似文献   

4.
The advantages of constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency have focused the researches of advanced propulsion on detonation engines. The paper gives coverage of efforts undertaken during past decades in adjusting detonations for propulsion applications, and highlights new challenges in studying fluid flow dynamics relevant to onset of detonation.  相似文献   

5.
The behavior of nitromethane under the action of a plane shock wave presenting local overpressures is experimentally analysed. The role of hot spots and the successive activation of new reaction sites are clearly evidenced. The optical observations made during the build-up to detonation and the measured shock sensitivities support a model of initiation for heterogeneous explosives.  相似文献   

6.
煤油温度对于爆震波形成影响的实验研究   总被引:1,自引:0,他引:1  
在内径为30mm的脉冲爆震发动机模型上,以煤油为燃料,以空气为氧化剂,成功地进行了两相爆震实验,获得了充分发展的脉冲爆震波。测试了在化学恰当比,不同爆震频率及燃油温度下的爆震波压力,并对其变化进行了分析。通过分析实验结果发现,在化学恰当比下,爆震频率不变时,煤油温度的升高明显促进了爆震的形成,在内径小于混合物胞格尺寸的爆震管内,可以形成充分发展的两相脉冲爆震波。  相似文献   

7.
A numerical study for the unsteady detonation of an unconfined tetryl charge of small diameter, which is assumed to be homogeneous, was performed by using the two-dimensional Lagrangian hydrodynamic computer code, 2 DL, with the first order Arrhenius equation of reaction rate. Becker-Kistiakowsky-Wilson (BKW) and Kihara-Hikita (KH) equations of state have been applied to the detonation products.In the case of BKW, it is shown that the rarefaction waves propagating inward from the lateral surface make the reaction rate slow and give a curvature to the front. Then after an induction time, a strong initiation occurs in the reaction zone near the lateral surface and higher pressure zone moves to the axis. This higher pressure accelerates the detonation propagation near the lateral surface and the curvature of detonation front is reduced. Then, the reaction at the lateral surface again begins to decay by the rarefaction waves. Such a sequence of process is repeated periodically.The possibility of the occurrence of the strong initiation depends on the pressure and temperature in the shocked zone near the surface. In a small diameter charge, the delayed explosion becomes weaker near the surface, while its frequency increases. No shock interaction occurs because the direction of the particle flow is always divergent.In the case of KH equation of state, the temperature of detonation is higher than that obtained by BKW and the behaviour of instability becomes rather different from the previous result, i.e. in the axis the pressure oscillates repeating the overdriven and underdriven detonation similar with the case of BKW.  相似文献   

8.
The paper presents the results of developing of physical and mathematical model making it possible to take into account the effect of droplets non-uniformity in space and size distribution on ignition conditions for fuel sprays. The influence of condensed phase volume fraction on ignition and combustion of sprays was studied, physical and mathematical models for multi-phase flows, mixture formation and combustion of liquid fuels based on solving Navier–Stokes equations for gas phase accounting for thermal and mechanical interaction with poly-dispersed droplets array. The problems of particulate phase dynamics are regarded accounting for the interaction with gas phase atomization, evaporation and combustion.It was shown that depending on droplet size distribution and aerosol cloud density different flow scenarios were possible.Several ignition zones could be formed behind incident shock wave depending on mixture properties and initiation parameters. The possibility of numerical simulation permitting variation of definite parameters only made it possible to explain this fact.  相似文献   

9.
Critical conditions for detonation failure due to tube expansion have been observed in marginal detonations propagating in a in. (6.35 × 76.2 mm) channel. In these experiments, a well established marginal detonation propagating in the narrow channel entered a test section in which one of the narrow walls was inclined to the central axis at positive angles which ranged from 10° to 45°. Experiments were performed at pressures ranging from 60 to 200 torr (8 to 26.7 kPa) in stoichiometric hydrogen-oxygen mixtures diluted with 20, 50 and 70% argon. Smoke track records obtained on the surface which is the major dimension of the tube, were used to determine failure, incipient failure or self-sustenance of the entering wave.Because of the narrow tube used in the studies the incident waves were marginal in that their velocity was below the expected CJ (Chapman-Jouguet) value, their transverse wave spacing was larger than one would see in a large tube, and the transverse waves were of greater strength than in an ordinary detonation. All of these indicators of marginal behavior became progressively more pronounced as the pressure dropped from 200 torr (26.7 kPa) to the limit pressure of approximately 58 torr (7.73 kPa).The most interesting result of this experimental investigation is that the theoretical analyses predicted that simple one-dimensional opening of the tube should not show a pressure dependence to failure, while the experiments showed a definite decrease in the opening angle required for failure as initial pressure decreased. This behavior is related to the marginality of the incident waves, which is observed to increase smoothly with decreased pressure. It is postulated that detonation failure in the hydrogen-oxygen system occurs when the shock velocity at the end of the cell drops to about 0.60 of the CJ value due either to marginal behavior or to an expansion of the cross section of the tube.  相似文献   

10.
A model for an elementary detonation cell is postulated. On its basis, the geometry of the cell pattern and the kinematics of the wave fronts forming the cells are evaluated. The cell size is determined assuming that the induction time obeys an Arrhenius relationship with temperature. Thus, it is shown that some kinetic parameters of the mixture, such as the activation energy, can be deduced from the cell size. It is also demonstrated that by combining the cell model with the experimental data on the propagation of the detonation wave in a rapidly expanding channel, the initiation energy for a cylindrical detonation wave can be estimated.  相似文献   

11.
Detonation in heterogeneous systems involving parallel layers of two different substances was investigated. It was assumed that the denser medium can undergo fast chemical reaction without mixing with the other medium, and the detonation propagates along the two layers. The process of initiation is associated with a shock wave advancing through the medium of lesser density. An idealized gasdynamic model of the phenomenon is proposed in order to evaluate detonation parameters of the two-layer system on the basis of the characteristic features of its constituents. As calculation shows, in the absence of mixing between the two layers, the detonation is capable of propagating at a higher velocity than in the case when the constituents forming the layers are mixed.  相似文献   

12.
For turbulent flame prediction a four-equation turbulence model consisting of the turbulent kinetic energy, the dissipation rate and the density-velocity correlations using unweighted statistics is suggested. The fluctuating concentrations are taken into account by using Spalding's (1971) equation for the variance of the mixture fraction f and by defining the probability density function of f as beta-function. The thermodynamic model for the combustion of H2 with air assumes infinitely fast reaction in a global single step. Preliminary results are shown for the calculation of Kent and Bilger (1972) turbulent H2-air diffusion flame. For this flame with fluctuating density the inclusion of the velocity-density correlations appears to be essential, because they have a strong effect especially on the development of the turbulent viscosity and the mean velocity and mass fraction profiles. Consequently the mean concentrations are in good agreement with the experimental results.  相似文献   

13.
The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.  相似文献   

14.
Ir/Al2O3, Ir–Ru/Al2O3 and Ru/Al2O3 catalysts with approximately 33% metallic content in mass were prepared in 20 impregnation steps. For the Ru catalyst, two impregnation methods were employed: incipient wetness (chlorinated precursor) and by excess volume (non-chlorinated precursor). For the remaining catalysts, only incipient wetness impregnation was used with chlorinated precursors. Catalyst textural properties were evaluated before and after catalytic tests: metallic grade, specific area, mesopore volume distribution, metallic dispersion, and metallic particle average diameter. Catalysts were tested for hydrazine (N2H4) decomposition reaction in a 5 N satellite thruster and their performances were compared to Shell 405 commercial catalyst. Results showed that catalysts containing Ir were similar in performance to Shell 405 commercial catalyst and that the catalyst containing only Ru should not be used in cold starts.  相似文献   

15.
Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2–O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2–O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2–O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.  相似文献   

16.
Baolin  Xibin  Zhengxue 《Acta Astronautica》2009,64(11-12):1021-1031
Mixed H2/H output-feedback controller with pole placement constraints against the internal uncertainty of moment-of-inertia variation and space environmental disturbances is proposed for mircosatellite attitude control. The multi-objective controller is designed based on linear model of attitude dynamics. The H performance takes into account both robustness stability against moments-of-inertia uncertainty and the disturbance rejection aspect. H2 performance takes into account the LQG aspect which avoids the undesirable wheels’ saturation effect. In addition, the closed-loop poles can be forced into some sector of the stable half-plane to obtain well-damped transient responses. The problem is then reduced to a convex optimization involving linear matrix inequalities (LMIs), so it can be efficiently solved. The simulation results demonstrate that the presented mixed H2/H control system is robust stable and optimal in the sense of H2 norm, and has good steady-state and dynamic performances against the parameter uncertainties and various disturbances for the microsatellite attitude control system.  相似文献   

17.
郭红杰  梁国柱  马彬 《宇航学报》2006,27(5):1068-1071,1112
爆震波点火器用于工程,其设计存在一个最佳结合点,使得在合适的管路中,爆震波传播速度、转捩距离、爆震波能量等能够符合点火器目标需求。为了研制适用于工程的爆震波点火器,在氢氧爆震波点火器基本特性试验的基础上,对初始混合气体的混合比等与爆震波特性的关系进行了研究。对实验结果进行分析认为。混合比对爆燃爆震转捩(DDT)距离影响较大,混合比大于3时,其转捩距离小于500mm。混合比增加时,爆震波传播速度会减小,但稳定的爆震波相对于波的混气的马赫数并小减小,维持在4.8左右。在初始混气压力不变情况下,质量流量可以提高爆震波能量,增强爆震波的点火能力。研究结论时爆震波点火器在工程中实际应用及以后的研究方向具有指导性作出。  相似文献   

18.
《Acta Astronautica》2010,66(11-12):1599-1615
High energy pulses of a CO2 laser are focused in a parabolic mirror yielding to a laser-supported detonation. The generated thrust acting on the reflector as a bell nozzle is studied in multiple pulse free flight experiments with respect to axial, lateral and angular momentum coupling. The employment of an ignition pin on the reflector's axis of symmetry lowering the ignition threshold by several orders of magnitude is found to provide for a reproducible detonation process. The axial momentum coupling of each pulse is analyzed with respect to initial lateral offset and tilt during the flight. High speed analyses of recorded flights indicate that lateral momentum components occur re-centering the thruster on the beam. Thrust vector steering can be realized by tilt of the ignition pin inside the thruster, thus shifting the detonation. A design model of a laser-driven rocket including a remotely accessible steering gear was developed and tested successfully.  相似文献   

19.
超声速斜爆震发动机起爆过程研究综述   总被引:3,自引:0,他引:3  
对超声速斜爆震发动机的起爆方式进行了比较分析,对起爆发展和稳定特性的研究历程和发展现状进行了综述,对相关的研究方法和技术进行了概括,提出了利用先进光学测量技术,结合激光诱导荧光技术对超声速斜爆震发动机起爆过程进行实验研究的设想。  相似文献   

20.
在大型航天器的真空热试验中,仅从过冷器排除的液氮和低温气氮的混合物就达约5×104 kg,其中蕴涵了108 kJ量级的冷能。文章首先介绍了自然冷能和LNG冷能利用的研究现状,并结合航天器真空热试验的实际情况,研究了试验过程中排气造成的冷能损失,对它的再利用可行性进行了讨论,提出可以采用联合法冷能回收流程,并提出了冷能利用中的几个关键问题。认为:需要解决液氮和低温气氮供应的连续性及找到恰当的二次冷媒,是真空热试验中冷能利用的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号