首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.  相似文献   

2.
《Acta Astronautica》2001,48(5-12):503-516
In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves.Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field.Mass savings of the tethered sytems versus conventional equivalents will be evaluated.Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc.It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach.This comparison is put in the perspective of an ever-increasing occupation of the space environment.It is concluded that tethers can in fact help mitigate the debris risk and that for each application a useful niche can be defined. It is argued that eliminating pollution directly after use of the precious resource of space is not only good custom, but also an important way to make the risk of debris controllable and independent of future trends. Although tethers may have large exposure in terms of area-time product, they deliver a quick cleaning service that may be appreciated by the future users of space.  相似文献   

3.
低极轨卫星具有轨道周期短、对地观测分辨率高等优点,但由于所在轨道大气阻力大,其使用寿命受到较大限制。文章提出采用水平结构电动绳系抵消低极轨卫星大气阻力的方法,通过系绳电流与地球磁场相互作用产生洛仑兹力进行推进,进而在无燃料消耗的情况下实现对低极轨卫星轨道高度的维持。初步分析了该方法在低极轨不同尺寸卫星中的应用潜力,计算了160 、400 和800 km 典型高度低极轨卫星所经历的地球磁场、电离层和高层大气环境相关参数变化,比较了不同条件下电动绳系推力与大气阻力大小随轨道位置的变化。分析结果表明,该方法适用于400 km 轨道高度以上大卫星;在满足一定系绳长度和轨道高度的条件下,电动绳系可以有效延长低极轨卫星的轨道寿命。  相似文献   

4.
By using electrodynamic drag to greatly increase the orbital decay rate, an electrodynamic space tether can remove spent or dysfunctional spacecraft from low Earth orbit (LEO) rapidly and safely. Moreover, the low mass requirements of such tether devices make them highly advantageous compared to conventional rocket-based de-orbit systems. However, a tether system is much more vulnerable to space debris impacts than a typical spacecraft and its design must be proved to be safe up to a certain confidence level before being adopted for potential applications. To assess space debris related concerns, in March 2001 a new task (Action Item 19.1) on the “Potential Benefits and Risks of Using Electrodynamic Tethers for End-of-life De-orbit of LEO Spacecraft” was defined by the Inter-Agency Space Debris Coordination Committee (IADC). Two tests were proposed to compute the fatal impact rate of meteoroids and orbital debris on space tethers in circular orbits, at different altitudes and inclinations, as a function of the tether diameter to assess the survival probability of an electrodynamic tether system during typical de-orbiting missions. IADC members from three agencies, the Italian Space Agency (ASI), the Japan Aerospace Exploration Agency (JAXA) and the US National Aeronautics and Space Administration (NASA), participated in the study and different computational approaches were specifically developed within the framework of the IADC task. This paper summarizes the content of the IADC AI 19.1 Final Report. In particular, it introduces the potential benefits and risks of using tethers in space, it describes the assumptions made in the study plan, it compares and discusses the results obtained by ASI, JAXA and NASA for the two tests proposed. Some general conclusions and recommendations are finally extrapolated from this massive and intensive piece of research.  相似文献   

5.
Sounding rocket experiment of bare electrodynamic tether system   总被引:1,自引:0,他引:1  
An overview of a sounding rocket, S-520-25th, project on space tether technology experiment is presented. The project is prepared by an international research group consisting of Japanese, European, American, and Australian researchers. The sounding rocket will be assembled by the ISAS/JAXA and will be launched in the summer of 2009. The sounding rocket mission includes two engineering experiments and two scientific experiments. These experiments consist of the deployment of bare electrodynamic tape tether in space, a quick ignition test of hollow cathode system in space, the demonstration of bare electrodynamic tether system in space, and the test of the OML (orbital-motion-limit) current collection theory.  相似文献   

6.
Electrodynamic tethers provide a very promising propulsion system for de-orbiting of spent upper stages or LEO satellites. In this application, the Lorentz force generated by the interaction between the current in the wire and the geomagnetic field produces an electrodynamic drag leading to a fast orbital decay. The attractiveness of tether system lies especially in their capability to operate with uncontrollable satellites and in the modest mass requirement.The need for significant along-track forces leads however to the onset of an undesirable torque which, if not controlled, may drive the system into a dangerous instability. The electrodynamic torque determines in-plane and out-of-plane librations whose amplitude depends upon the current in the wire, mass distribution and system dimensions. Even more important, this torque is modulated along the orbit due to the changing magnetic field and ionospheric plasma density, giving rise to forced oscillations. The counteracting (and stabilizing) gravity-gradient torque is generally to small to ensure stability in typical, strongly non-symmetrical mass distributions, where a massive satellite or upper stage is attached at the lower end and a light electron collecting device (or passive ballast mass) is deployed a few kilometers above. Reducing the electron current or increasing the mass at the upper end are both unattractive solutions.In this paper we show how the electrodynamic torque pumps energy into the system (finally leading to large librations angles) and indicate that many proposed configurations are intrinsically unstable. Our results point out the need for a control strategy. Fortunately, the librations amplitudes can be limited by acting on the current flowing in the wire. Our model of a rigid, conductive tether shows that a control based upon timely current switch-off, using energy criteria, is indeed effective and simple to implement. The resultant duty-cycles are satisfactory and affect only marginally the de-orbiting times.  相似文献   

7.
We investigate how ideas from the International Environmental Agreement (IEA) literature can be applied to the problem of space debris mitigation. Space debris pollution is similar to other international environmental problems in that there is a potential for a “tragedy of the commons” effect: individual nations bear all the cost of their mitigation measures but share only a fraction of the benefit. As a consequence, nations have a tendency to underinvest in mitigation. Coalitions of nations, brought together by IEAs, have the potential to lessen the tragedy of the commons effect by pooling the costs and benefits of mitigation. This work brings together two recent modeling advances: (i) a game theoretic model for studying the potential gains from IEA cooperation between nations with asymmetric costs and benefits, (ii) an orbital debris model that gives the societal cost that specific actions, such as failing to deorbit an inactive spacecraft, have on the environment. We combine these two models with empirical launch-share data for a “proof of concept” of an IEA for a single mitigation measure—deorbiting spacecraft at the end of operational lifetime. Simulations of empirically derived and theoretical launch distributions among nations suggest the possibility that voluntary coalitions can provide significant deorbiting gains relative to nations acting in the absence of an IEA agreement.  相似文献   

8.
The force on a coil moving with a high-speed parallel to a conducting grid consisting of parallel tubes is investigated. The coil performs a rebound motion or an oscillatory heave motion when pressed toward the grid by reactive on-board engines. The coil is approximated by two parallel wires moving parallel to the grid tubes. The corresponding electrodynamic problem is two dimensional and is solved by expansions in terms of Bessel functions. Expressions are derived for the lift and drag force as well as the heat generated in the tubes in the limit of strong skin effect. The dependence on the grid spacing is analysed in the approximation of no mutual inductance between the tubes. Two specific applications are a shunt deflecting the coil, and a funnel leading to multiple reflection. Finally, the varying magnetic flux threading the coil is considered and the thermal load of the coil is estimated.  相似文献   

9.
《Acta Astronautica》1999,44(5-6):257-265
Explored here is the feasibility of achieving satellite pitch and roll attitude maneuvers through tethers. The proposed tethered satellite system (TSS) comprises of four identical tethers connecting the auxiliary mass to the satellite at its four distinct off-centered and equiangularly spaced points. The open-loop tether length control laws have been developed in order to achieve arbitrary pitch and roll attitude slewing maneuvers. Numerical simulation of the nonlinear governing equations of motion for these tether length variations establishes the feasibility of executing fixed as well as chase-slewing maneuvers. Nearly passive nature of the proposed mechanism using very short tethers along with small auxiliary mass needed makes the concept particularly attractive for future space missions.  相似文献   

10.
《Acta Astronautica》2004,55(11):917-929
As a countermeasure for suppressing space debris growth (P. Eighler, A. Bade, Chain Reaction of Debris Generation by Collisions in Space—A Final Threat to Spaceflight? in: 40th Congress of the International Astronautical Federation, IAA-89-628, October 1989), the National Aerospace Laboratory of Japan is investigating a satellite capture, repair and removal system for non-cooperative satellites, part of which involves assessing the viability of electrodynamic tether (EDT) technology as an orbital transfer system. In this paper, some results concerning the time required to remove existing satellites, the behavior of flexible tethers during the debris separation phase, and orbital transfer strategies of EDT systems during space debris removal operations are described. From numerical simulations, it is found that EDT systems can transfer satellites from LEO to orbits with a short lifetime within a realistic timeframe. It is also found that the stability of EDT systems is compromised when debris separation occurs both while a tether current is running and when the ratio of the end mass to that of the service satellite is high. To ensure stability, the end mass should be selected from the target debris group with due regard for the maximum possible mass that can be maneuvered safely. Moreover, it is also found that orbital elements (a, e, i) can be changed independently with an adequate current control strategy.  相似文献   

11.
系绳的安全性设计是成功实施空间系绳试验非常重要的一环。文章首先介绍了空间系绳的发展状况,然后对已有的系绳材料与结构作了详细的介绍与分析,并通过对国外历次空间系绳试验的总结,给出了从安全性角度如何选择系绳的考虑因素。  相似文献   

12.
Overview of the legal and policy challenges of orbital debris removal   总被引:1,自引:1,他引:1  
Brian Weeden   《Space Policy》2011,27(1):38-43
Much attention has been paid recently to the issue of removing human-generated space debris from Earth orbit, especially following conclusions reached by both NASA and ESA that mitigating debris is not sufficient, that debris-on-debris and debris-on-active-satellite collisions will continue to generate new debris even without additional launches, and that some sort of active debris removal (ADR) is needed. Several techniques for ADR are technically plausible enough to merit further research and eventually operational testing. However, all ADR technologies present significant legal and policy challenges which will need to be addressed for debris removal to become viable. This paper summarizes the most promising techniques for removing space debris in both LEO and GEO, including electrodynamic tethers and ground- and space-based lasers. It then discusses several of the legal and policy challenges posed, including: lack of separate legal definitions for functional operational spacecraft and non-functional space debris; lack of international consensus on which types of space debris objects should be removed; sovereignty issues related to who is legally authorized to remove pieces of space debris; the need for transparency and confidence-building measures to reduce misperceptions of ADR as anti-satellite weapons; and intellectual property rights and liability with regard to ADR operations. Significant work on these issues must take place in parallel to the technical research and development of ADR techniques, and debris removal needs to be done in an environment of international collaboration and cooperation.  相似文献   

13.
The electric solar wind sail (E-sail) is a novel, efficient propellantless propulsion concept which utilises the natural solar wind for spacecraft propulsion with the help of long centrifugally stretched charged tethers. The E-sail requires auxiliary propulsion applied to the tips of the main tethers for creating the initial angular momentum and possibly for modifying the spinrate later during flight to counteract the orbital Coriolis effect and possibly for mission specific reasons. We introduce the possibility of implementing the required auxiliary propulsion by small photonic blades (small radiation pressure solar sails). The blades would be stretched centrifugally. We look into two concepts, one with and one without auxiliary tethers. The use of small photonic sails has the benefit of providing sufficient spin modification capability for any E-sail mission while keeping the technology fully propellantless. We conclude that small photonic sails appear to be a feasible and attractive solution to E-sail spinrate control.  相似文献   

14.
朱仁璋 《宇航学报》1994,15(4):24-30
在已有的研究结果的基础上,对空间系绳在回收容器回中的应用,作了进一步分析,包括从回收容器离开空间站至回收容器从系绳上脱落的系绳伸展运动,(2)从系绳脱落的回收容器的返回运动,(3)释放容器后的系绳的收回运动。对回收容器的动态释放,除了两阶段指数型伸展程序外,还提出了另外两种导致系绳后摆的方式。对静态释放与动态释放,不仅对系绳长度,而且对系绳张力作了计算与分析。为了系绳收回过程的稳定,不仅要施加张力  相似文献   

15.
电动帆是一种新兴的无推进剂损耗的推进方式,利用太阳风的动能冲力飞行。电动帆由数百根长而细的金属链所组成,这些金属链通过空间飞行器自旋展开,太阳能电子枪向外喷射电子,使金属链始终保持在高度的正电位,这些带电的金属链会排斥太阳风质子,利用太阳风的动能冲力推动空间飞行器驶向目标方向。针对电动帆轨迹优化问题,提出采用Gauss伪谱法进行轨迹优化,克服了间接法对协态变量初值敏感的缺点。考虑在太阳风暴等原因造成特征加速度改变的情况,基于Gauss伪谱法实现电动帆在线轨迹重新规划,提高电动帆对太阳风不确定性的适应能力。最后以太阳系外探测任务为例,对电动帆和太阳帆的性能进行对比,仿真结果表明电动帆在星际远航任务中所用时间较短。  相似文献   

16.
Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.  相似文献   

17.
In recent years Micro Systems Technology (MST) was introduced to manufacture miniaturized components for satellite subsystems, like small sensors, valves, micromotors, antennas and many more. These components can be used to build a new class of satellites weighing considerably less than 10 kg, with the capabilities comparable to present microsatellites. With the possibility of cheap mass production of such nanosatellites new applications become possible. However, the construction of very small satellites is connected with problems concerning launch, orbit control and, deorbiting. Furthermore the reduction of size creates certain limits for power consumption, data rates and optical resolutions which have to be carefully considered.  相似文献   

18.
空间绳系捕获系统捕获目标物后的组合体在拖曳离轨过程中常产生振动,为此,建立了切向连续推力作用下的空间拖曳绳系组合体面内动力学模型,并对模型进行了横向摆动与纵向振动耦合分析。针对组合体的纵向振动问题提出了一种以张力控制为内环、速度控制为外环的双闭环振动控制策略。进行了振动控制仿真分析,并根据动力学的相似性,建立地面模拟实验系统,仿真与实验结果表明该控制策略可迅速抑制组合体纵向振动、减小系绳冲击并可避免出现系绳松弛现象。  相似文献   

19.
20.
Paul Williams   《Acta Astronautica》2009,64(11-12):1191-1223
The dynamics and control of a tethered satellite formation for Earth-pointing observation missions is considered. For most practical applications in Earth orbit, a tether formation must be spinning in order to maintain tension in the tethers. It is possible to obtain periodic spinning solutions for a triangular formation whose initial conditions are close to the orbit normal. However, these solutions contain significant deviations of the satellites on a sphere relative to the desired Earth-pointing configuration. To maintain a plane of satellites spinning normal to the orbit plane, it is necessary to utilize “anchors”. Such a configuration resembles a double-pyramid. In this paper, control of a double-pyramid tethered formation is studied. The equations of motion are derived in a floating orbital coordinate system for the general case of an elliptic reference orbit. The motion of the satellites is derived assuming inelastic tethers that can vary in length in a controlled manner. Cartesian coordinates in a rotating reference frame attached to the desired spin frame provide a simple means of expressing the equations of motion, together with a set of constraint equations for the tether tensions. Periodic optimal control theory is applied to the system to determine sets of controlled periodic trajectories by varying the lengths of all interconnecting tethers (nine in total), as well as retrieval and simple reconfiguration trajectories. A modal analysis of the system is also performed using a lumped mass representation of the tethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号