首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global modulation of galactic cosmic rays in the inner heliosphere is determined by four major mechanisms: convection, diffusion, particle drifts (gradient, curvature and current sheet drifts), and adiabatic energy losses. When these processes combine to produce modulation, the complexity increases significantly especially when one wants to describe how they evolve spatially in all three dimensions throughout the heliosphere, and with time, as a function of solar activity over at least 22 years. In this context also the global structure and features of the solar wind, the heliospheric magnetic field, the wavy current sheet, and of the heliosphere and its interface with the interstellar medium, play important roles. Space missions have contributed significantly to our knowledge during the past decade. In the inner heliosphere, Ulysses and several other missions have contributed to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated theories and numerical models to explain these observations, and to understand the underlying physics that determines galactic cosmic ray modulation at Earth. An overview is given of some of the observational and modeling highlights over the past decade.  相似文献   

2.
Our knowledge of how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged as a result of measurements from several missions launched in the past ten years. Among them, Ulysses explored the polar regions of the inner heliosphere during the last solar minimum period and is now revisiting southern polar latitudes under solar maximum conditions. This gives us for the first time the possibility to compare modulation of cosmic rays at high heliographic latitudes during such different time periods. We present data from different instruments on board the Ulysses spacecraft together with 1 AU measurements in the ecliptic. In this paper we focus on measurements that have direct implications for our understanding of modulation of cosmic rays in the inner heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Modulation models based on the numerical solution of Parker's transport equation for galactic cosmic rays in the heliosphere make clear predictions about modulation in the high latitude heliosphere. However, for these predictions certain assumptions have to be made, for example, what the heliospheric magnetic field (HMF) looks like above the solar poles and what the spatial dependence of the diffusion coefficients are. For this presentation the general predictions of a standard drift model for the modulation of cosmic rays in the high latitude heliosphere, in particular predictions for the Ulysses trajectory, are discussed and critically reviewed. Preliminary results from Ulysses show a significant increase in the solar wind speed towards higher latitudes. The effects of this strong latitudinal dependence together with different modifications of the HMF at these high latitudes on the apparently too large diffusion and drifts predicted by current models are also shown.  相似文献   

4.
Cosmic ray particles respond to the heliospheric magnetic field in the expanding solar wind and its turbulence and therefore provide a unique probe for conditions in the changing heliosphere. During the last four years, concentrated around the solar minimum period of solar cycle 22, the exploration of the solar polar regions by the joint ESA/NASA mission Ulysses revealed the three-dimensional behavior of cosmic rays in the inner and middle heliosphere. Also during the last decades, the Pioneer and Voyager missions have greatly expanded our understanding of the structure and extent of the outer heliosphere. Simultaneously, numerical models describing the propagation of galactic cosmic rays are becoming sophisticated tools for interpreting and understanding these observations. We give an introduction to the subject of the modulation of galactic cosmic rays in the heliosphere during solar minimum. The modulation effects on cosmic rays of corotating interaction regions and their successors in the outer heliosphere are discussed in more detail by Gazis, McDonald et al. (1999) and McKibben, Jokipii et al. (1999) in this volume. Cosmic-ray observations from the Ulysses spacecraft at high heliographic latitudes are also described extensively in this volume by Kunow, Lee et al. (1999). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The three-dimensional structure of the solar maximum modulation of cosmic rays in the heliosphere can be studied for the first time by comparing observations from Ulysses at high solar latitudes to those from in-ecliptic spacecraft, such as IMP-8. Observations through mid-2000 show that changes in modulation remain well correlated at Earth and Ulysses up to latitudes of ∼60° south. The observed changes seem to be best correlated with changes in the inclination of the heliospheric current sheet. The spectral index of the proton spectra at energies <100 MeV in the ecliptic and at high latitudes remain roughly consistent with the T +1 spectrum expected from modulation models, while the spectral index of the helium spectrum at both locations has changed smoothly from the flat or even negative index spectra characteristic of anomalous component fluxes toward the T +1 galactic spectrum with increasing modulation. Intensities near the equator and at high latitude remain nearly equal, and latitudinal gradients for nucleonic cosmic rays thus remain small (<1% deg−1) at solar maximum. In the most recent data fluxes of protons and helium with energies less than ∼100 MeV nucl−1 measured by Ulysses are smaller than those measured at IMP-8, suggesting that the gradients may have switched to become negative toward the poles even before a clear reversal of polarity for the solar magnetic dipole has been completed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
7.
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of 80°S in September 1994 and 80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of 52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations.  相似文献   

8.
The spectra of galactic cosmic rays that are observed inside the heliosphere result from the interaction of the spectra present in the local interstellar medium with the structured but turbulent magnetic field carried by the solar wind. Observational tests of solar modulation theory depend on comparisons between spectra inside and outside the heliosphere. Our knowledge of the local interstellar spectra are indirect, using extrapolations of interplanetary spectra measured at high energies where solar modulation effects are minimal and modeling of the physical processes that occur during particle acceleration and transport in the interstellar medium. The resulting estimates of the interstellar spectra can also be checked against observations of the effects that cosmic rays have on the chemistry of the interstellar medium and on the production of the diffuse galactic gamma-ray background. I review the present understanding of the local galactic cosmic-ray spectra, emphasizing the constraints set by observations and the uncertainties that remain.  相似文献   

9.
We review recent advances in the field of galactic cosmic ray transport in the distant heliosphere. The advent of global MHD models brought about a better understanding of the three-dimensional structure of the interface between the solar system and the surrounding interstellar space, and of the magnetic field topology in the outer heliosphere. These results stimulated a development of galactic cosmic ray transport models taking the advantage of the available detailed plasma backgrounds and of the new Voyager results from the heliosheath. It emerges that the heliosheath plays a prominent role in the process of modulation and filtration of low-energy galactic ions and electrons. The heliosheath stores particles for a duration of several years thus acting as a large reservoir of galactic cosmic rays. Cosmic-ray trajectories, transit times, and entry locations across the heliopause are discussed. When compared to observations model calculations of low energy electrons show almost no radial gradient up to the termination shock, irrespective of solar activity, but a large gradient in the inner heliosheath. Intensities are however sensitive to heliospheric conditions such as the location of the heliopause and shock. In contrast, high energy proton observations by both the Voyager spacecraft show a clear solar cycle dependence with intensities also increasing with increasing distance. By comparing these observations to model calculations we can establish whether our current understanding of long-term modulation result in computed intensities compatible to observations.  相似文献   

10.
The combination of Voyager 1 (77.9 AU, 34.4° N) and Voyager 2 (61.2 AU, 24.5° S) at moderate heliolatitudes in the distant heliosphere and Ulysses with its unique latitudinal surveys in the inner heliosphere along with IMP 8 and other satellites at 1 AU constitutes a network of observatories that are ideally suited to study cosmic rays over the solar minimum of cycle 22 and the onset of solar activity and the long term cosmic ray modulation of cycle 23. Through 2000.7 there have been three well-defined step decreases in the cosmic ray intensity at 1 AU with the cumulative effect being in good agreement with the net decrease in cycle 21 at a comparable time in the solar cycle. Over this period the intensity changes at Ulysses are similar to those at 1 AU. In the distant heliosphere the initial decreases appear to be smaller than those at 1 AU. However the full effects of the interplanetary disturbances producing the most recent and largest step decrease in the inner heliosphere have not yet reached V-2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   

12.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   

13.
Fisk  L. A.  Wenzel  K.-P.  Balogh  A.  Burger  R. A.  Cummings  A. C.  Evenson  P.  Heber  B.  Jokipii  J. R.  Krainev  M. B.  Kóta  J.  Kunow  H.  Le Roux  J. A.  McDonald  F. B.  McKibben  R. B.  Potgieter  M. S.  Simpson  J. A.  Steenberg  C. D.  Suess  S.  Webber  W. R.  Wibberenz  G.  Zhang  M.  Ferrando  P.  Fujii  Z.  Lockwood  J. A.  Moraal  H.  Stone  E. C. 《Space Science Reviews》1998,83(1-2):179-214
The global processes that determine cosmic ray modulation are reviewed. The essential elements of the theory which describes cosmic ray behavior in the heliosphere are summarized, and a series of discussions is presented which compare the expectations of this theory with observations of the spatial and temporal behavior of both galactic cosmic rays and the anomalous component; the behavior of cosmic ray electrons and ions; and the 26-day variations in cosmic rays as a function of heliographic latitude. The general conclusion is that the current theory is essentially correct. There is clear evidence, in solar minimum conditions, that the cosmic rays and the anomalous component behave as is expected from theory, with strong effects of gradient and curvature drifts. There is strong evidence of considerable latitude transport of the cosmic rays, at all energies, but the mechanism by which this occurs is unclear. Despite the apparent success of the theory, there is no single choice for the parameters which describe cosmic ray behavior, which can account for all of the observed temporal and spatial variations, spectra, and electron vs. ion behavior.  相似文献   

14.
Belov  Anatoly 《Space Science Reviews》2000,93(1-2):79-105
The current knowledge and ideas, obtained from groundlevel observations and concerning the solar modulation of cosmic rays, are reviewed. The following topics are discussed: observations of the cosmic ray modulation at the Earth and main characteristics of the accumulated experimental data; manifestations of the solar magnetic cycle in cosmic rays; the effect of hysteresis and its relation to the size of the heliosphere; the rigidity spectrum of long-term cosmic ray variations; the influence of the sporadic effects on long-term modulation; long-term variations of cosmic ray anisotropy and gradients; the place of groundlevel observations in current studies of cosmic ray modulation and their future prospects. Particular consideration is given to the correlation of long-term cosmic ray variations with different solar-heliospheric parameters, and to empirical models of cosmic ray modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
McKibben  R.B.  Lopate  C.  Zhang  M. 《Space Science Reviews》2001,97(1-4):257-262
With Ulysses approaching the south solar polar latitudes during a period of high solar activity, it is for the first time possible to study the distribution of solar energetic particles (SEPs) in solar latitude as well as in radius and longitude. From July 1997 to August 2000, Ulysses moved from near the solar equator at ∼5 AU to ∼67° S latitude at ∼3 AU. Using observations of >∼30 MeV protons from Ulysses and IMP-8 at Earth we find good correlation between large SEP increases observed at IMP and Ulysses, almost regardless of the relative locations of the spacecraft. The observations show that within a few days after injection of SEPs, the flux in the inner heliosphere is often almost uniform, depending only weakly on the position of the observer. No clear effect of the increasing solar latitude of Ulysses is evident. Since the typical latitudinal extent of CMEs, which most likely accelerate the SEPs, is only ∼30°, this suggests that the enhanced cross-field propagation for cosmic rays and CIR-accelerated particles deduced from Ulysses’ high latitude studies near solar minimum is also true for SEPs near solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Observations of the eleven-year cosmic-ray modulation cycle   总被引:1,自引:0,他引:1  
  相似文献   

18.
Webber  W.R.  Lockwood  J.A. 《Space Science Reviews》1998,83(1-2):159-167
This paper summarizes cosmic ray data on both galactic and anomalous particles in the inner and outer heliosphere near the sunspot minimum in 1995 and 1996 at the end of solar cycle 22. These data come from the IMP spacecraft in the inner heliosphere and the Voyager and Pioneer spacecraft in the outer heliosphere. In the inner heliosphere, the cosmic ray intensities at all energies in 1996 have recovered to almost the same maximum values they had at the last sunspot minimum in 1987 and the intensities are an even closer match to those observed two 11-year cycles earlier in 1976. In the outer heliosphere beyond 40 AU the intensity recovery is very slow and the intensities at all energies and for all species are almost constant in 1995-96 indicating that little further recovery can be expected in this cycle. The intensity of galactic cosmic rays in 1996 is only 0.3-0.5 of that observed at the same radius of 42 AU in 1987 and for anomalous cosmic rays this ratio is only 0.1-0.2. This suggests a dramatically different entry of particles into the heliosphere in the two cycles for both types of particles as well as significantly different particle flow characteristics in the outer heliosphere. The net result of these different characteristics is that near the Earth only a relatively small intensity difference is observed between successive 11-year solar cycles whereas in the outer heliosphere the differences between cycles become very large and may even dominate the overall modulation.  相似文献   

19.
The heliospheric cosmic-ray network–Pioneer 10/11, Voyager 1/2, Ulysses and IMP 8 have provided detailed observations of galactic and anomalous cosmic rays over a period of time that now exceeds 25 years and extends to heliocentric distances beyond 65 AU. These data, when compared over consecutive 11 year solar cycles, clearly establishes the existence of a 22-year cosmic ray modulation cycle that is dominated by the 11-year solar activity cycle but is strongly influenced by gradient and curvature drifts in association with the tilt of the heliospheric neutral current sheet as well as the mediation of the enhanced magnetic turbulence above the solar poles. Over successive solar minima these effects manifest themselves in the remarkable differences in the energetic particle time histories, in the magnitude and sign of the radial and latitudinal intensity gradients and in the changes in the energy spectra of anomalous cosmic rays as a function of heliocentric distance.From solar minimum to solar maximum the long term modulation is principally a combination of two solar related phenomena, the cumulative effect of long-lived global merged interaction regions (GMIRs) and gradient and curvature drifts in the interplanetary magnetic field. For the periods when positive ions flow in over the solar poles and out along the heliospheric current sheet, the modulation of ions is dominated by GMIRs. When this flow pattern is reversed it is found that drifts are an important but not dominant factor for cosmic ray modulation with the current sheet related drift effects decreasing with increasing rigidity R, heliolatitude and heliocentric distance. Over a single solar cycle these conclusions are confirmed at 1 AU by comparing the relative modulation of cosmic-ray helium nuclei and electrons.  相似文献   

20.
Balogh  A. 《Space Science Reviews》1998,83(1-2):93-104
The structure of Heliospheric Magnetic Field (HMF) is a function of both the coronal conditions from which it originates and dynamic processes which take place in the solar wind. The division between the inner and outer regions of the heliosphere is the result of dynamic processes which form large scale structures with increasing heliocentric distance. The structure of the HMF is normally described in the reference frame based on Parker's geometric model, but is better understood as an extension of potential field models of the corona. The Heliospheric Current Sheet (HCS) separates the two dominant polarities in the heliosphere; its large scale geometry near solar minimum is well understood but its topology near solar maximum remains to be investigated by Ulysses. At solar minimum, Corotating Interaction Regions (CIRs) dominate the near-equatorial heliosphere and extend their influence to mid-latitudes; the polar regions of the heliosphere are dominated by uniform fast solar wind streams and large amplitude, long wavelength, mostly transverse magnetic fluctuations. Coronal Mass Ejections (CMEs) introduce transient variability into the large scale heliospheric structure and may dominate the inner heliosphere near solar maximum at all latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号