首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Results of a combination of radio-crossing and in situ measurements of plasma density in an artificial plasma “bubble” in the ionosphere are presented. Shaped — charge barium injection was made at short distance (≤50 m) to plasma diagnostics on the rocket. After injection the rocket passed through expanding plasma shell. Plasma density depletion inside was more than one order and plasma enhancements on the boundary about 3–5 times that of background. When the rocket passed the shell and went away by 2.1 km an abrupt drop of telemetry signal level (≤ 65 dB) was registered though plasma density was not more than 3×103sm−3. An estimation of high frequency signal refraction on the plasma shell is in good accordance with refraction data of geostationary satellite signals on equatorial bubbles.  相似文献   

2.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   

3.
The spectra of neutrons >10 MeV and gamma-rays 1.5–100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex “SALUTE-7”-“KOSMOS-1686”, are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm−2 s−1 for neutrons, 0.8 cm−2 s−1 for gamma-rays at the equator and 1.2 cm−2 s−1, 1.9 cm−2 s−1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from “CORONAS-I” data are near those for albedo particles.  相似文献   

4.
The estimation of radiation quality factor in space flights is a serious problem of space dosimetry. The solution of this problem is based on LET-spectra measurements. The “NAUSICAA”-device installed on the “MIR” station has a detector with a large geometric factor, that gives the possibility of measuring LET-spectra with sufficient statistic in relatively short time interval and hence the corresponding Q. LET-spectra are accumulated through 24 hour periods and equivalent dose (H), absorbed dose (D), quality factor and flux (F) are measured every 10 minutes. The obtained data permit the estimate of the diurnal Q and Q in South Atlantic Anomaly. These values vary in the range of 1.4 – 2.2. The analysis of these values including their comparison with the calculated results is given in this paper.  相似文献   

5.
Experimental drop tube of the metallurgy department of Grenoble   总被引:1,自引:0,他引:1  
The drop tube which will be available in the “Centre d'Etudes Nucléaires de Grenoble” is described. Its main features are the following: - Dimensions : Drop height : 47.1 m Drop time : 3.1 s Tube inside diameter : 0.2 m - Experimental atmosphere : 1 Ultra-vacuum : 10−6 to 10−7 Pa - Residual gravity level : 10−8 to 10−9 g according to the vacuum level and drop diameter.

This facility is unique insofar as it enables experiments to be performed under ultra-vacuum conditions which, by delaying the formation of surface oxides, should contribute to improving maximum undercooling values.

The techniques used for obtaining small metallic drops (0.5 to 3 mm) are described. The availability of this instrument for the scientific community is also foreseen by the french sponsoring organizations (CEA, CNES, CNRS) ; some practicle informations will be given to potential experimenters.  相似文献   


6.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

7.
The Geminga light curve obtained with the “Gamma-1” telescope features two peaks separated by 0.5 ± 0.03 period. The light curve is pronounced for γ-quanta energies higher than 400 MeV. The pulsed flux upper limit (1σ) in the energy interval 50 – 300 MeV is 6·10−7 cm−2sec−1. For energies >300 MeV the pulsed component power law spectrum has an exponent 1.1 −0.3+1.1 and an integral flux (1.1±0.3)·10−6 cm−2sec−1.  相似文献   

8.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


9.
This overview deals with very high impact velocities, where complete vaporization of an impacting cosmic dust particle is to be expected upon expansion from the high pressure high temperature state behind the stopping shock (v > 15 km/s). The topics discussed are the mechanics and thermodynamics of compression, adiabatic release, equation of state and nonequilibrium states upon expansion. The case of very high particle porosity (ρ 1 g/cm3) and the case of very small dust masses (m < 10−17 g) are discussed from what one presently knows. The possibility of three body collisions in the expanding gas phase is discussed briefly. The effect of oblique impact is discussed with respect to its relevance to the ionization process. The numbers communicated are up to the highest “experimental” impact velocities (80 km/s, Halley mission). As one goes to lower impact velocities (20 < v < 30 km/s) there is still complete vaporization of the dust particle but ionization out of the bulk of the particle becomes low. Other than thermal processes may become important. Ideas are outlined to understand their physical nature.  相似文献   

10.
Rendezvous Missions to Comets lead to low velocities at the nucleus of the comet. The resulting impact velocity of the cometary dust on a target will range between 10 and 400 m/s. The dust particle which impacts on a target can be collected for a subsequent in-situ analysis.

The collection efficiency of a target depends in addition to obvious geometrical conditions upon the surface of the target. The surface characteristics can be divided into two groups:

• “dirty” surfaces, covered with silicate or hydrocarbon compounds (for example vacuum grease),

• “clean” surfaces, like gold (with additional sputtering).

This paper deals with the experimental and theoretical investigation of the collection efficiency of “clean” targets. Laboratory experiments are described which were conducted at the Technische Universität München, Lehrstuhl für Raumfahrttechnik, and the Max-Planck-Institut für Kernphysik, Heidelberg. In both experiments an electromagnetic accelerator is used to accelerate different types of dust in vacuum to velocities between 10 and 400 m/s.

The target is then examined under the microscope and a secondary ion mass spectrometer (which is a model of the laboratory carried on board of the spacecraft for “in situ” analysis). The adhesion of the dust grains at the target is evaluated experimentally in an ultracentrifuge.  相似文献   


11.
The lifetime of almost all the asteroids against catastrophic impact events is less than the age of the solar system, implying that the asteroids can be considered as outcomes of catastrophic collisions. Therefore to understand their physical properties (structure, shape, rotation, regolith development) and their family memberships (since families are generated by the escape of breakup fragments), a systematic knowledge of the outcomes of catastrophic impacts under a variety of conditions seems needed. In particular, interesting fields to be explored by laboratory experiments are: the dependence of the critical energy densities associated with various degrees of fragmentation on the target's size and composition; the velocity distribution of the fragments and the inelasticity of the process in different cases; the shape of the fragments and its possible correlation with other quantities; the way a dust- or regolith-covered target affects the collisional outcomes; the angular momentum partitioning and the rotation of the fragments. On this latter problem very few experimental results are presently available; on the other hand, the rotation of small asteroids presents several intriguing “anomalies”.

A significant progress of our understanding of asteroid collisional evolution and related phenomena can be provided by new laboratory experiments of collisional breakup. The targets should have spherical and/or irregular shape (up to axial ratios of the order of 2), and should be made of (possibly different) geological materials. The interesting projectile velocities are of the order of the relative velocities commonly found among asteroids, i.e., in the range 1 to 10 Kms−1. In order to get catastrophic collisions, the ratio of the projectile kinetic energy to the target mass (≡E/M) has to be chosen within a “critical” range (for basalt targets, from 106 to 108 erg/g). In some particular cases, this kind of experiments has been already performed in past (Gault and Wedekind [10]; Fujiwara et al. [7]; Fujiwara and Tsukamoto [9]); however the generalization of the results to a wide range of experimental conditions is lacking, and many problems of outstanding importance to model asteroid evolution are still completely open.  相似文献   


12.
The heat transfer in a regolith subsurface layer of thickness 20 m has been theoretically simulated for the areas near Mercury's north pole aiming at the clarification of the possible existence of subsurface ice formations of different form. The paper considers different models of the icy regolith structure and composition: pure uniform amorphous ice; a porous dispersive system with ice-filled pores and voids; permafrost. For comparison the heat transfer in dry iceless regolith has been considered as well. It has been shown that the line of maximum distribution of subsurface icy formations depends on the icy regolith model, but for any one in the “hot” regions it does not go below 70°. For the “cool” regions this line has been shown to go from 5° to 10° southward than that for the “hot” ones. The possible thickness of icy regolith near the pole has been estimated for different models assuming an interior heat flow of 15 mW m−2. It has been shown that the maximum thickness of this layer takes place at the pole and is equal to 10 km for any model.  相似文献   

13.
Since 1988 high sensitivity dosimeter-radiometer “Liulin” has been installed on board the MIR space station. Device measured absorbed dose rate and flux of penetrating particles. Results of measurements showed that after powerful solar proton events (SPE) September–October, 1989 and March, 1991 additional quasistable radiation belts were formed in the near earth space within the interval L=1.8−3.0. These “new” belts were observed as an additional maximums in flux (and sometimes dose) channels when crossing the SAA region. “New” belts were quasi stable and existed at least several months, decaying slightly after SPE. Dose to flux ratio analysis showed that major components of these belts were energetic electrons and protons arising in connection with preceding SPEs.  相似文献   

14.
A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities 1 g cm−3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r−2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of “hypernovae” may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the disk of material begins to form and makes a transition from a non-Keplerian to quasi-Keplerian flow in the collapsar and related models.  相似文献   

15.
16.
The measurements of high-energy neutron (with energies 30–300 MeV) and proton (with energies 1–200 MeV) fluxes are being conducted on-board “Mir-Spectr” orbital complex. Neutrons are detected by the undirected (FOV 4π sr) scintillator spectrometer, consisting of 4 identical CsI(Tl) detector units (the effective area for neutrons 30 cm2). The gamma-quanta, which can be also detected by this instrument, are separated from neutrons by the analysis of the scintillator output pulse shape. To exclude registration of charged particles an anticoincidence plastic scintillator shield is realized in each detector unit. The proton fluxes are measured by the telescope based on 3 semiconductor detectors with small geometry factor (1 cm2×sr). As the first result of the experiment the upper limit of the integral flux of local and albedo neutrons in the equatorial region (L<1.1) was estimated. The results of this measurements can be useful for the radiation security. Also, the neutrons of solar flares can be detected in this experiment.  相似文献   

17.
The interplanetary space is not a passive medium, which merely constitutes a scene for the propagation of previously accelerated energetic particles, but influences the distribution of particles by changing their energies as well due to interactions with magnetic field inhomogeneities. Such processes manifest themselves in the energy spectra of solar energetic particle (SEP) events. In this paper the fluxes of protons with energies of 4–60 MeV are investigated on the basis of two data sets. Both sets are homogeneous, obtained by the CPME instrument aboard the IMP 8 satellite between 1974 and 2001. The first includes all SEP events where the integral fluxes of >4 MeV protons exceeded 2 particle/cm2 s sr. The other set consists of fluxes recorded in differential energy windows between 0.5 and 48 MeV. Important characteristics of SEP events include the rates of decrease of particle flux, which, as well as peak flux time, is an integral feature of the interplanetary medium within a considerable region, surrounding the observation point. The time intervals selected cover the decay phases of SEP events following flares, CMEs and interplanetary shocks of different origin. Only those parts of declines were selected, that could reasonably be described by exponential dependence, irrespective of the gradual/impulsive character of the events. It is shown that the average values of characteristic decay time, τ, and energy spectral index, γ, are all changing with the solar activity phase. Distributions of τ and γ values are obtained in SEPs with and without shocks and during different phases of events: just after peak flux and late after maximum.  相似文献   

18.
19.
The work we present deals with the spectrometric measurements of VIRTIS instrument of the Comet P/Wirtanen planned for the Rosetta mission. This spectrometer can monitor (VIRTIS M channel: 0.250μm – 0.980μm; Δκ=20cm−1; 0.980 – 5.0 μm; Δκ = 5cm−1; VIRTIS H channel: 2.0 μm – 5.0 μm; Δκ=2cm−1) the nucleus and the coma in order to provide a general picture of coma's composition, the production of gas and dust, the relationship of coma production to surface composition and the structure and variation of mineralogy of the nucleus surface. During the mission the observation conditions of the spectroscopic investigation change due to different relative positions spacecraft/comet, and to the different illumination conditions of the surface at various distances of the comet to the Sun. The nucleus surface is continuously modified by the ice sublimation accompanied by gas and dust emission. Consequently the surface also its spectrophotometric properties changes and their monitoring can give a new insight. The important role of simulations is to predict the results of measurements in various experimental condition what, in the future, can help in interpretation of the measured data.

In this paper the first results of our simulation the radiance from the comet in the 0.25–5.0μm spectral range at two distances from the Sun (1AU and 3AU) are shown. The distance between the Rosetta orbiter and the nucleus surface as well as the sun zenith angles are taken into account according to the Rosetta mission phases. In fact the surface and coma properties vary along the comet orbit, and should be taken into account in our calculations. The optical parameters of the dust on the surface (e.g. reflectance) and in the coma (e.g. Qext) were calculated from optical constants of possible comet analogues. The thermodynamic parameters of the comet are taken from the models of comet evolution. Through this kind of modelling it is possible to identify the surface characteristics in spectra of the radiation from the surface of nucleus transmitted through the coma loaded with dust and gases.

Even if the “Rosetta mission” is postponed, with the consequence of a target change, we think that our idea and the method used for the simulations can be useful also for the new Rosetta target - the comet 67P/Churyumov Gerasimenko.  相似文献   


20.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号