共查询到20条相似文献,搜索用时 0 毫秒
1.
T.L. Gulyaeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):191-194
The shape of electron density profile in the International Reference Ionosphere could be improved significantly if the height hg and electron density Ng of the F region sub-peak inflexion point were entered in the set of the profile standard parameters. To study variations of these important parameters, the N(h) analysis of the statistically-summarized ionograms at the latitudes of 40–80°N of the Eastern hemisphere has been carried out for the two-hours intervals of local time, three seasons (winter, equinox and summer) and two levels of solar activities characterized by Covington indicesF10.7 = 100 and 200. It is shown that the parameters of the inflexion point can be expressed in most cases via the peak parameters of the F2 layer ashg= 0.8 hmF2 and Ng= 0.5 NmF2. 相似文献
2.
K. Rawer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(1):11-15
Methods are described by which the desired analytical representation of the whole profile might be reached while enforcing the most important observed physical features. An outline of future work in this connection is given. 相似文献
3.
Y.V Ramanamurty K Rawer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):29-34
The new IRI formula, as accepted at the 1983 Stara Zagora Workshop, prescribes the use of Epstein functions for reproducing logarithmic electron density profiles. In this paper we discuss solutions which might be applicable to the lower ionosphere. The experimental data base is briefly reviewed. It appears that the stratification near 80 km must be accepted as a regular feature of the daytime lower ionosphere. The C-layer problem is left open. In order to reproduce such profiles, one needs three LAY-functions. Examples show that the weighted sum of these does very well represent experimental profiles, the amplitudes being determined by a least square fit. For profile synthesis (as in IRI) a least square determination of the three amplitudes, admitting four linear conditions, is proposed. 相似文献
4.
Y.O. Migoya-Orue S.M. RadicellaB. Nava 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Electron density obtained by IRI (topside options NeQuick and IRI-Corr) and NeQuick models in their standard versions have been compared with plasma density values measured by F13 and F15 DMSP satellites for years of different solar activities. A statistical study of the differences between modeled and experimental data has been carried out to investigate each model performance. 相似文献
5.
Jhoon Kim Soo Jin Lee Jae Deuk Lee Gwang Rae Cho Young In Won Hi-Ku Cho 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(12):2025-2030
KSR-II, a two-stage sounding rocket of KARI was launched successfully at the Korean Peninsula on June 11, 1998. The apogee of the rocket was 137 km. For the ozone measurement, 8-channel UV and visible radiometers were onboard the rocket. The rocket measured an in situ stratospheric and mesospheric ozone density profile over Korea during its ascending phase using the radiometer and transmitted the data to ground station in real time. The maximum ozone density occurs near 25 km. Retrieved profile has a random error (1σ) of approximately 15% for altitude below 20km, 7% between 20-50 km and 10% greater than 50 km. The retrieved data were compared with Dobson spectrophotometer, ozonesonde, and HALOE onboard the UARS. Our results are in reasonable agreements with others. 相似文献
6.
I. Kutiev P. Marinov A. Belehaki B. Reinisch N. Jakowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km. 相似文献
7.
8.
Xiang Wang Chen Zhou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2252-2258
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment. 相似文献
9.
A. Kiraga Z. K
os V. N. Oraevsky S. A. Pulinets V. C. Dokukin E. P. Szuszczewicz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(12):143-146
Based on the dispersion relation of electron plasma, one can expect, that the waves excited in the frequency band (fp, fu=sqrt(fp*fp+fc*fc)) should persist in experimental spectra. For wave data from a spacecraft immersed in a cold plasma such an assumption may be misleading. In measurements performed on board the INTERCOSMOS-19, ACTIVE, APEX satellites and VC36.064CE rocket the most prominent spectral structure is centered around frequency fr fulfilling the relation fcrp and corresponds to resonant detection of Bernstein waves excited in the surrounding plasma by spacecraft systems. Input network mismatch at frequencies around fu significantly depresses natural plasma noise as well as that excited by the spacecraft. Plasma emissions in the band (fp, fu) are prominent if the electromagnetic excitation is preferential (topside sounders) or if the excitation introduces nonequilibrium components into the plasma e.g. particle beams or clouds. Experimental examples are presented and parameters of cold plasma spectra useful for electron density estimation are discussed. The application to other spacecraft-cold plasma configurations is suggested. 相似文献
10.
11.
P.F. Denisenko V.V. Sotsky O.A. Maltseva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(12):4078-4088
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research. 相似文献
12.
Ye Zhang Jade Q. Clement Daila S. Gridley Larry H. Rodhe Honglu Wu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups. 相似文献
13.
无电极高密度等离子体电磁推进技术已成为未来深空探测、载人航天和货运、太阳能电站以及航天器在轨服务与维护等空间任务中极具竞争力的核心推进技术之一。在梳理不同无电极等离子体电磁加速机制基础上,开展大功率无电极高密度等离子体电磁推进技术性能对比,给出新概念无电极场反构型电磁推进技术向未来超大功率拓展的优势和发展潜力,同步分析了该技术亟需解决的关键基础问题,旨在为中国新概念场反构型电磁推进技术的研发提供理论基础。 相似文献
14.
Naoya Maeda Satoko Takasaki Hideaki Kawano Shinichi Ohtani P.M.E. Décréau J.G. Trotignon S.I. Solovyev D.G. Baishev Kiyohumi Yumoto 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
By applying the cross-phase method and the amplitude-ratio method to magnetic field data obtained from two ground stations located close to each other, we can determine the frequency of the field line resonance (FLR), or the field line eigenfrequency, for the field line running through the midpoint of the two stations. From thus identified FLR frequency we can estimate the equatorial plasma mass density (ρ) by using the T05s magnetospheric field model [Tsyganenko, N.A., Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208, 2005] and the equation of Singer et al. [Singer, H.J., Southwood, D.J., Walker, R.J., Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res. 86 (A6) 4589–4596, 1981]. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(4):1948-1961
In this paper the influence of large-scale decreasing and increasing gradients of the density of magnetized plasma on the relaxation process of a continuously injected relativistic electron beam with an energy of 660 keV () and a pitch-angle distribution is studied using particle-in-cell numerical simulations. It is found that for the selected parameters in the case of a smoothly decreasing gradient and in a homogeneous plasma the formation of spatially limited plasma oscillations of large amplitude occurs. In such cases, modulation instability develops and a long-wave longitudinal modulation of the ion density is formed. In addition, the large amplitude of plasma waves accelerates plasma electrons to energies on the order of the beam energy. In the case of increasing and sharply decreasing gradients, a significant decrease in the amplitude of plasma oscillations and the formation of a turbulent ion density spectrum are observed. The possibility of acceleration of beam electrons to energies more than 2 times higher than the initial energy of the beam particles is also demonstrated. This process takes place not only during beam propagation in growing plasma density, but also in homogeneous plasma due to interaction of beam particles with plasma oscillations of large amplitude. 相似文献
16.
Debasish Roy Biswajit Sahu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1039-1048
Within a quantum hydrodynamic model and using the reductive perturbation technique, the nonlinear ion-acoustic wave (IAW) excitations due to a moving charged object in an electron-pair-ion quantum plasma are studied both analytically and numerically. In such quantum plasmas we have derived forced Korteweg-de Vries (fKdV) type equation for finite amplitude nonlinear IAWs. The effect of relevant plasma parameters on solitonic excitations is investigated. Numerical simulation shows the generation of advancing solitons ahead of the forcing term traveling at a faster rate with trailing wakes behind the forcing disturbance. It is found that propagation characteristics of nonlinear excitations are significantly affected by quantum parameter. Additionally, we have pursued our analysis by extending it to account for arbitrary amplitude IA solitons, and derived a system of nonlinear differential equations which are analyzed numerically to study the dynamics. Nonlinear analysis predicts the existence of periodic and quasiperiodic nature of the nonlinear system and reveals that the transition from quasiperiodic to periodic behavior occurs due to the variation of quantum diffraction. 相似文献
17.
G. N. Boiko L. M. Erukhimov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(12):71-74
The creation of artificial plasma density irregularities (AI) with prescribed spectra in the ionospheric heating experiments is discussed. We show that periodic successions of powerful pulses, pumped into the F-region of the ionosphere lead to obtaining AI with the controlled stationary spatial spectrum and allow us to change power low spectral index 2β at least from 2β = 2.2 to 2β = 3.4 by changing of the powerful pulse time schedule. 相似文献
18.
I.A. Grebnev G.V. Ivanov V.P. Khodnenko A.I. Morozov I.A. Perkov A.A. Pertsev Ju.A. Romanovsky Ju.P. Rylov G.G. Shishkin Ju.V. Trifonov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(2):153-158
The injected plasma jet-ionosphere interaction features were studied in experiments carried out on board two METEOR satellites. The injected plasma jet propagation depends considerably on jet injection pitch-angle. The impactless jet spreading took place without considerable interaction with the ionosphere plasma, when injected along the magnetic field. By injection across the magnetic field very effective plasma jet-ionosphere plasma and the Earth's magnetic field interaction was observed. Plasma jet injection provoked the generation of electromagnetic fields near the satellite. 相似文献
19.
V. I. Badin Yu. V. Dumin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(12):119-122
The initial reduction of the electron density after the injection explosion is shown to be associated with recombination at the adiabatic cooling under the cloud expansion. Primordial thermal ions can disappear in triple collisions almost entirely. Nevertheless, a minor amount of ions is conserved due to the freezing effect. The further rapid increase in the electron concentration may be attributed to the secondary ionization process. It is shown that the cumulative electronic ionization can account for the observed electron density elevation. The modified two-stream instability can provide a longitudinal (anomalous) resistance for the longitudinal electric field required for an avalanche. The electric field and longitudinal currents arise owing to the polarization with ions entrained by the neutral gas across the magnetic field and magnetized electrons moving along the field. 相似文献
20.
Geoffrey Andima Emirant B. Amabayo Edward Jurua Pierre J. Cilliers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):264-273
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique. 相似文献