首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiplanetary life has been studied by scientists as a way to supply energy or sustain human life in the future. Mars is likely to be man’s first destination, colonization using onsite structural construction would be one of the main options. The first step to designing a reliable building is to know the applied structural loads and to have an accurate design load combination. Due to lack of complete knowledge, short span of recorded data, Martian environment, and hazardous environment that Martian structures face, constructed Martian structures should behave appropriately under the highest likely live, dead and environmental loads either simultaneously or as a worst-case scenario. The present study evaluated and calculated probable Martian structural loads, including live, internal pressure, snow, gravity (dead), dust accumulation, thermal stress, wind, marsquake, asteroid, and meteoroid impact loads and their effects. Information was gathered from previous studies and valid data from Martian landers, rovers and orbiters. Wind loads were calculated based on the over 6.5 years of data recorded by Vikings 1 and 2, temperature and winds for InSight (TWINS) sensor. A wind shear exponent and wind profile have been proposed for a Martian flat terrain construction site. Marsquake lateral loads, frequency content and seismicity were assessed using data from the seismic experiment for interior structure (SEIS) and the Viking 2 seismometer. Considering the high influx of micrometeoroids, their penetration distance, impact loads and their effects on structures were calculated. The annual probability of an asteroid impact on a settlement was assessed for a 30-year mission. A load map for Martian residential buildings that considers the worst-case scenario in which a Martian structure should be designed based on them has been proposed.  相似文献   

2.
党兆龙  陈百超 《深空探测学报》2016,3(2):129-133,144
火星土壤既是火星表面探测活动的主要探测对象,也是表面探测器设计中需考虑的重要因素之一。火壤的物理力学特性将直接影响着陆器着陆缓冲系统、火星车移动系统等的设计。此外,在着陆器和火星车等表面探测器的地面研制过程中,需要研制模拟火壤,形成模拟的火星表面环境,开展相关的着陆器着陆缓冲性能、火星车移动性能等验证试验。迄今为止,人类已经有多个探测器登陆火星,获取了大量的有关火壤的信息,也研制了多种模拟火壤。通过对已有火壤和模拟火壤的物理力学特性分析,梳理出火壤物理力学特性的参数范围,可为我国火星探测器的研制提供参考。  相似文献   

3.
构建了一个可以得到火星赤道面上磁场分布的模型. 模型根据卫星观测数据, 提出了火星电离层、磁层顶和磁尾电流片上都各自通有电流的假设. 由电流的连续性条件可知, 这三种背景条件下的电流之间满足一定关系, 即火星磁层顶上的总电流是电离层上的总电流与磁尾电流片上的总电流之和. 这些电流产生的磁场与太阳风磁场共同构成了火星赤道面上磁场分布. 通过计算发现, 采用这种磁场模型得到的结果与目前卫星所观测的结果以及与采用其他方法得到的结果符合得较好.   相似文献   

4.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   

5.
在对欧空局火星快车探测器搭载的MARSIS雷达的浅表层探测数据进行校准过程中,获得了火星电离层的总电子含量(total electron content,TEC)观测数据。利用该数据,计算火星低纬度地区电离层的峰值电子密度和标高;并对其进行统计分析发现,在低纬度地区,火星冬季电离层的标高和峰值电子密度均较夏季高,即冬季电离层较夏季更显著,且春季电离层的电子密度梯度最大。  相似文献   

6.
Technical and architectural problems of a Martian base have been arised in many publications. Usually there is one solution described in detail or general classification is presented. In this paper, a recognition of low-cost solutions for Martian architecture is analyzed. The overview through various building techniques based on previous concepts of extraterrestrial architecture is summarized. Several solutions taking advantages of the shape of terrain, aiming for cost decreasing of human settlement on Mars are proposed.  相似文献   

7.
The origin of the anisotropy in the shape of the Martian obstacle and bow shock is analyzed using Mars Global Surveyor observations. The influence of MHD or ion pick-up effects on Martian obstacle position was to be small found, however, localized Martian crustal magnetization increases the thickness of the downstream planetary magnetotail by 500–1000 km in agreement with earlier Phobos 2 observations. A new analytical model is presented for Martian obstacle shape variation for different solar wind ram pressure. Elongation of the Martian BS cross-section in the direction perpendicular to IMF was confirmed while the shift of this cross section in the +Y direction of Martian interplanetary medium reference frame was discovered. The shift of BS cross section in the direction of interplanetary electric field was not revealed thus not conforming the idea that mass-loading play some role in BS control.  相似文献   

8.
Just as clearly as Mariner 10 established that Mercury has an intrinsic magnetic field, the Pioneer Venus orbiter has established that Venus has no significant intrinsic field. This is perhaps the opposite of what might be expected. Mercury, a small planet might be expected to cool rapidly and its internal dynamo to cease, while Venus, which is almost as large as the Earth, should not have lost much heat. On the contrary the source of energy of the Mercury dynamo appears to be extant whereas that of Venus appears to be extinct.The existence of a Martian magnetic field is controversial. No unambiguous signature of a Martian magnetic field has been reported. If the field on the nightside of Mars is of planetary rather than solar origin the Russian Mars spacecraft observations indicate the Martian dipole lies near the planetary equator rather than its pole.  相似文献   

9.
A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center.  相似文献   

10.
China plans to implement the first Mars exploration mission in 2020. It will conduct global and comprehensive exploration of Mars and high precision and fine resolution detection of key areas on Mars through orbiting, landing and roving. The scientific objectives include studying the Martian morphology and geological structure characteristics, studying the soil characteristics and the water-ice distribution on the Martian surface, studying the material composition on the Martian surface, studying the atmosphere ionosphere and surface climate and environmental characteristics of Mars, studying the physical field and internal structure of Mars and the Martian magnetic field characteristics. The mission equips 12 scientific payloads to achieve these scientific objectives. This paper mainly introduces the scientific objectives, exploration task, and scientific payloads.   相似文献   

11.
The current Martian water cycle is extremely asymmetric, with large amounts of vapor subliming off a permanent north polar water ice cap in northern summer, but with no apparent major source of water vapor in the southern hemisphere. Detailed simulations of this process with a three-dimensional circulation model indicate that the summertime interhemispheric exchange (Hadley cell) is very much stronger than transport by eddies in other seasons. As a result, water ice would be distributed globally were it not for the buffering action of regolith soil adsorption which limits the net flux of water vapor off the north polar cap to amounts that are insignificant even on the scale of thousands of years. It has been suggested that the polar layered deposits are the result of exchange on these long time scales, driven by changes in Martian orbital parameters. We therefore are conducting simulations to test the effect of varied orbital parameters on the Martian water cycle. We find that when the perihelion summer pole is charged with a polar water ice cap, large quantities of water are quickly transfered to the aphelion summer pole, setting up an annual cycle that resembles the present one. Thus, the adsorptivity of the Martian regolith may be in the narrow range where it can limit net transport from the aphelion but not the perihelion pole.  相似文献   

12.
Quartz crystal piezoelectric sensors are suitable for deposition analyses that need very high sensitivity. Due to the wide working ranges and high performances, micro-balances can measure the mass settling in average Mars conditions during a period of months before saturation is reached. This ensures a proper use for short and long term water and dust deposition monitoring. Micro-balances have been studied, calibrated and used for the GIADA (grain impact analyser and dust accumulator) experiment for the ESA-Rosetta space mission. Experience on micro-balance performance study by dust deposition has been acquired and water vapour deposition studies are in progress in a Martian atmosphere simulation chamber. Preliminary results show that micro-balances are capable to detect up to partial pressure values corresponding to parts per billion of the typical Martian atmosphere.  相似文献   

13.
火星空间环境磁场探测研究——高精度磁强计   总被引:2,自引:0,他引:2  
萤火一号卫星将对火星空间环境磁场实施探测。火星磁场对火星弓激波、磁鞘、电离层、大气等绝大多数空间环境效应都具有重要影响,萤火一号对火星磁场的探测是通过搭载于其上的科学载荷磁强计来实现的。此磁强计在工作原理及具体设计上,考虑了火星轨道严酷的工作环境和科学目标所需的测量要求。通过装星前的地面标定测试,验证了萤火一号磁强计可以在-130~75℃温度范围内测量±256nT以内的磁场,分辨率可达到0.01 nT,带宽内总噪声小于0.03 nT,能够满足萤火一号对火星空间环境探测的需求。  相似文献   

14.
Nitrogen is an essential element for life. Specifically, “fixed nitrogen” (i.e., NH3, NH4+, NOx, or N that is chemically bound to either inorganic or organic molecules and is releasable by hydrolysis to NH3 or NH4+) is the form of nitrogen useful to living organisms. To date no direct analysis of Martian soil nitrogen content, or content of fixed nitrogen compounds has been done. Consequently, the planet's total inventory of nitrogen is unknown. What is known is that the N2 content of the present-day Martian atmosphere is 0.2 mbar. It has been hypothesized that early in Mars' history (3 to 4 billion years ago) the Martian atmosphere contained much more N2 than it does today. The values of N2 proposed for this early Martian atmosphere, however, are not well constrained and range from 3 to 300 mbar of N2. If the early atmosphere of Mars did contain much more N2 than it does today the question to be answered is, Where did it go? The two main processes that could have removed it rapidly from the atmosphere include: 1) nonthermal escape of N-atoms to space; and 2) burial within the regolith as nitrates and nitrites. Nitrate will be stable in the highly oxidized surface soil of Mars, and will tend to accumulate in the soil. Such accumulations are observed in certain desert environments on Earth. Some NH4+---N may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K. Analysis of the Martian soil for traces of NO3 and NH4+ during future missions will supply important information regarding the nitrogen abundance on Mars, its past climate as well as its potential for the evolution of life.  相似文献   

15.
Geologic and climatologic studies suggest that conditions on early Mars were similar to early Earth. Because life on Earth is believed to have originated during this early period (3.5 billion years ago), the Martian environment could have also been conducive to the origin of life. To investigate this possibility we must first define the attributes of an early Martian biota. Then, specific geographic locations on Mars must be chosen where life may have occurred (i.e. areas which had long standing water), and within these distinct locations search for key signatures or bio-markers of a possible extinct Martian biota. Some of the key signatures or bio-markers indicative of past biological activity on Earth may be applicable to Mars including: reduced carbon and nitrogen compounds, CO3(2-), SO4(2-), NO3-, NO2- [correction of NO2(2)], Mg, Mn, Fe, and certain other metals, and the isotopic ratios of C, N and S. However, we must also be able to distinguish abiotic from biologic origins for these bio-markers. For example, abiotically fixed N2 would form deposits of NO3- and NO2-, whereas biological processes would have reduced these to ammonium containing compounds, N2O, or N2, which would then be released to the atmosphere. A fully equipped Mars Rover might be able to perform analyses to measure most of these biomarkers while on the Martian surface.  相似文献   

16.
Water is the essential precondition of life in general and also for the establishment of a Martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a "frozen ocean" under the surface of Mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a Martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the Martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a Martian base.  相似文献   

17.
火星大气环境模拟装置设计及仿真分析研究   总被引:1,自引:0,他引:1  
对火星表面大气环境特性进行了研究,通过选取合适的计算方法并结合FLUENT流体有限元计算软件对火星表面稀薄气体内部环流进行了模拟仿真分析,提出了以动量源模拟风扇段内流的仿真方法,并进行了可行性讨论。进一步实现了针对圆柱形模拟装置多工况下的内部气体流场稳态和非稳态计算仿真,并对计算结果进行了分析讨论,为火星大气环境模拟装置的设计提供了技术支持和参考。  相似文献   

18.
This paper gives a brief introduction of YingHuo-1 (YH-1), a Chinese Martian Space Environment Exploration Orbiter. YH-1 is a micro-satellite developed by Chinese Aerospace Industry,and will be launched together with Russian spacecraft, Phobos-Grunt, to orbit Mars in September,2009. Four payloads are selected for the mission, plasma package, including of electron analyzer, ion energy and mass analyzer; sat-sat occultation receiver; flux-gate magnetometer; and optical monitor.YH-1 mission focus on the investigation of the characteristics and its evolution of the Martian space Environment, and identifying major plasma processes, which provide channels for Martian volatiles escaping.  相似文献   

19.
The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.  相似文献   

20.
The organic compounds on the Martian surface are still undetectable by the previous Viking mission that has been sent to Mars even though they are expected to be there by exogenous and/or endogenous synthesis. The high abiotic reactivity has been the most acceptable explanation for the apparently absence of organic matter in the regolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号