首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   

2.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   

3.
The primary objective of Experiment M151 was to study by means of time and motion analytic techniques the inflight adaptation of Skylab crewmen to a variety of task situations involving different types of activity. A parallel objective was to examine astronaut inflight performance for any behavioral stress effects associated with the working and living conditions of the Skylab environment. Training data provided the basis for comparison of preflight and inflight performance. Efficiency was evaluated through the adaptation function, namely, the relation of performance time over task trials. The results indicate that the initial changeover from preflight to inflight (or, from 1-G to zero-G) was accompanied by a substantial increase in performance time for most work and task activities. Equally important was the finding that crewmen adjusted rapidly to the weightless environment and became proficient in developing techniques with which to optimize task performance. By the end of the second inflight trial, most of the activities were performed almost as efficiently as on the last preflight trial. In addition, the analysis demonstrated the sensitivity of the adaptation function to differences in task and hardware configuration. The function was found to be more regular and less variable inflight than preflight. Translation and control of masses (large or small) were accomplished easily and efficiently through the rapid development of the arms and legs (and the entire body) as subtle guidance and restraint systems. Finally, the adaptation function provided no evidence of behavioral stress effects attributable to the Skylab environment.  相似文献   

4.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   


5.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   

6.
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.  相似文献   

7.
8.
The results of biomedical investigations carried out in the U.S.S.R. manned space missions are discussed. Their basic result is well-documented evidence that man can perform space flights of long duration. The investigations have demonstrated no direct correlation between inflight or postflight physiological reactions of crewmembers and flight duration. In all likelihood, this can be attributed to the fact that special exercises done inflight efficiently prevented adverse effects of weightlessness. However, human reactions to weightlessness need further study. They include negative calcium balance and anemia as well as vestibulo-autonomic disorders shown by crewmembers at early stages of weightlessness. Attention should be given to psychological, social-psychological and ethical problems that may also limit further increase in flight duration.  相似文献   

9.
A metabolic balance study was conducted on the three crewmembers of the 84-day Skylab IV earth orbital mission. Dietary intake was controlled, monitored, and kept very nearly constant for a period commencing 21 days prior to flight, throughout flight, and for a period of 18 days postflight. Within the first 30 days of flight urine calcium rose to a level approx. 100% above preflight levels and remained elevated for the remainder of the flight. Fecal calcium excretion increased more slowly but continued to accelerate throughout the flight and did not return to baseline levels during the postflight period. Urinary nitrogen increased to 25-30% above preflight levels within one month following launch and thereafter gradually subsided toward control values. The overall losses of calcium averaged approx. 200 mg per day throughout the mission while nitrogen losses averaged 590 mg. Various other indices of musculoskeletal deterioration are discussed and correlated. The parallelism between the effects of weightlessness and bed rest is reviewed. It is noted, that no evidence is yet available as to the identity of the initial biological response to the absence of gravity.  相似文献   

10.
Treatment strategies for Space Motion Sickness (SMS) were compared using the results of postflight oral debriefings. Standardized questionnaires were administered to all crewmembers immediately following Space Shuttle flights by NASA flight surgeons. Cases of SMS were graded as mild, moderate, or severe based on published criteria, and medication effectiveness was judged based on subjective reports of symptom relief. Since October 1989, medication effectiveness is reported inflight through Private Medical Conferences with the crew. A symptom matrix was analyzed for 19 crewmembers treated with oral combination of scopolamine and dextroamphetamine (scopdex) and 15 crewmembers treated with promethazine delivered by intramuscular i.m. or suppository routes. Scopdex has been given preflight as prophylaxis for SMS, but analysis showed delayed symptom presentation in 9 crewmembers or failed to prevent symptoms in 7. Only 3 crewmembers who took scopdex had no symptoms inflight. Fourteen out of 15 crewmembers treated with i.m. promethazine and 6 of 8 treated with promethazine suppositories after symptom development had immediate (within 1-2 h) symptom relief and required no additional medication. There were no cases of delayed symptom presentation in the crewmembers treated with promethazine. This response is in contrast to untreated crewmembers who typically have slow symptom resolution over 72-96 h. We conclude that promethazine is an effective treatment of SMS symptoms inflight. NASA policy currently recommends treating crewmembers with SMS after symptom development, and no longer recommends prophylaxis with scopdex due to delayed symptom development and apparent variable absorption of oral medications during early flight days.  相似文献   

11.
One of the Skylab experiments dealt with motion sickness, comparing susceptibility in the workshop aloft with susceptibility preflight and postflight. Tests were conducted on and after mission-day 8 (MD 8) by which time the astronauts were adapted to working conditions. Stressful accelerations were generated by requiring the astronauts, with eyes covered, to execute standardized head movements (front, back, left, and right) while in a chair that could be rotated at angular velocities up to 30 rpm. The selected endpoint was either 150 discrete head movements or a very mild level of motion sickness. In all rotation experiments aloft, the five astronauts tested (astronaut 1 did not participate) were virtually symptom free, thus demonstrating lower susceptibility aloft than in preflight and postflight tests on the ground when symptoms were always elicited. Inasmuch as the eyes were covered and the canalicular stimuli were the same aloft as on the ground, it would appear that lifting the stimulus to the otolith organs due to gravity was an important factor in reducing susceptibility to motion sickness even though the transient stimuli generated under the test conditions were substantial and abnormal in pattern. Some of the astronauts experienced motion sickness under operational conditions aloft or after splashdown, but attention is centered chiefly on symptoms manifested in zero gravity. None of the Skylab-II crew (astronauts 1 to 3) was motion sick aloft. Astronaut 6 of the Skylab-III crew (astronauts 4 to 6) experienced motion sickness within an hour after transition into orbit; this constitutes the earliest such diagnosis on record under orbital flight conditions. The eliciting stimuli were associated with head and body movements, and astronaut 6 obtained relief by avoiding such movements and by one dose of the drug combination 1-scopolamine 0.35 mg + d-amphetamine 5.0 mg. All three astronauts of Skylab-III experienced motion sickness in the workshop where astronaut 6 was most susceptible and astronaut 4, least susceptible. The higher susceptibility of SL-III crewmen in the workshop, as compared with SL-II crewmen, may be attributable to the fact that they were based in the command module less than one-third as long as SL-II crewmen. The unnatural movements, often resembling acrobatics, permitted in the open spaces of the workshop revealed the great potentialities in weightlessness for generating complex interactions of abnormal or unusual vestibular and visual stimuli. Symptoms were controlled by body restraint and by drugs, but high susceptibility to motion sickness persisted for 3 days and probably much longer; restoration was complete on MD 7. From the foregoing statements it is clear that on and after MD 8 the susceptibility of SL-II and SL-III crewmen to motion sickness under experimental conditions was indistinguishable. The role played by the acquisition of adaptation effects prior to MD 8 is less clear and is a subject to be discussed.  相似文献   

12.
The authors examine psychological issues and countermeasures in extended space flight. Individual-oriented pre-flight countermeasures include basic psychological selection and training of astronaut candidates. Crew-oriented pre-flight countermeasures include crew composition based on psychological compatibility and psychological mission preparation. Psychological inflight support measures include those that address the emotional state and well-being of astronauts, performance efficiency, and prevention of task overload. Suggestions for an integrated approach to psychological countermeasures for extended flights are presented. Case reports examine psychological selection and training of German astronauts in preparation for the STS-55 mission.  相似文献   

13.
The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to he compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.  相似文献   

14.
These studies were designed and coordinated to evaluate specific aspects of man's immunologic and hematologic systems which might be altered by or respond to the space flight environment. The biochemical functions investigated included cytogenetic damage to blood cells, immune resistance to disease, regulation of plasma and red cell volumes, metabolic processes of the red blood cell, and physical chemical aspects of red blood cell functions. Only minor changes were observed in the functional capacity of erythrocytes as determined by measuring the concentrations of selected intracellular enzymes and metabolites. Tests of red cell osmotic regulation indicated some elevation in the activity of the metabolic dependent Na-K pump, with no significant alterations in the cellular Na and K concentrations or osmotic fragility. A transient shift in red cell specific-gravity profile was observed on recovery, possibly related to changes in cellular water content. Measurements of hemoconcentration (hematocrit, hemoglobin concentration, red cell count) indicated significant fluctuations postflight, reflecting observed changes in red cell mass and plasma volume. There was no apparent reticulocytosis during the 18 days following the first manned Skylab mission in spite of a significant loss in red cell mass. However, the reticulocyte count and index did increase significantly 5 to 7 days after completion of the second, longer duration, flight. There were no significant changes in either the while blood cell count or differential. However, the capacity of lymphocytes to respond to an in vitro mitogenic challenge was repressed postflight, and appeared to be related to mission duration. The cause of this repression is unknown at this time. Only minor differences were observed in plasma protein patterns. In the second mission there were changes in the proteins involved in the coagulation process which suggested a hypercoagulative condition.  相似文献   

15.
In long term space flight, the mechanical forces applied to the skeleton are substantially reduced and are altered in character. This reduced skeletal loading results in a reduction in bone mass. Exercise techniques currently used in space can maintain muscle mass but the mechanical stimulus provided by this exercise does not prevent bone loss. By applying an external impulsive load for a short period each day, which is intended to mimic the heel strike transient, to the lower limb of an astronaut during a long term space flight (5 months), this study tests the hypothesis that the bone cells can be activated by an appropriate external mechanical stimulus to maintain bone mass throughout prolonged periods of weightlessness. A mechanical loading device was developed to produce a loading of the os-calcis similar to that observed during the heel strike transient. The device is activated by the astronaut to provide a transient load to the heel of one leg whilst providing an equivalent exercising load to the other leg. During the EUROMIR95 mission on the MIR space station, an astronaut used this device for a short period daily throughout the duration of the mission. Pre- and post-flight measurements of bone mineral density (BMD) of the os-calcis and femoral neck of the astronaut were made to determine the efficacy of the device in preventing loss of bone mineral during the mission. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical stimulation does not produce a positive effect.  相似文献   

16.
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in- and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.  相似文献   

17.
Uri JJ  Haven CP 《Acta Astronautica》2005,56(9-12):883-889
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew–ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.  相似文献   

18.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   

19.
The system of countermcasure of microgravity effects has been developed in Russia that allowed to perform safely long-term space flights. This system that includes different means and methods such as special regimens of physical exercises, axial loading (“Pingiun”) and antigravity suits, low body negative pressure device (LBNP, “Chibis”) and “cuffs” and others has been used with certain variations at certain stages of flight in 27 successfully accomplished space flights that lasted from 60 to 439 days. The pre-, in- and postflight studies performed in 57 crew members of these flights have shown that the system of countermeasure is effective in preventing or diminishing to a great extent almost all the negative effects of weightlessness in flights of a year and more duration and that the intensity and duration of changes recorded in different body systems after flights do not correlate significantly to flight durations, correlating strongly to the volume and intensity of physical exercises used during flight and especially during concluding stage of it.  相似文献   

20.
Lower body negative pressure (LBNP) remains an important device for the generation of orthostatic stress in the space flight environment as well as a tool to measure inflight and postflight changes in orthostatic response.

These applied levels of LBNP have typically not exceeded 50–60 mm Hg negative pressure. Information is incomplete as to the levels of absolute LBNP orthostatic tolerance, and the factors responsible for their variance. A better definition of the tolerance limits for males and females could be expected to aid the evaluation of lower levels of LBNP.

An LBNP device was built to study absolute orthostatic tolerance; additionally, another LBNP device was constructed to permit orthostatic tolerance testing directly after a controlled water immersion period.

Absolute LBNP orthostatic tolerance patterns are analyzed for a group of males and females (series I). A preliminary statement on the variations of LBNP orthostatic tolerance after limited periods of water immersion and bed rest is also provided (series II).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号