首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kenneth R. Kroll   《Acta Astronautica》1985,12(12):987-993
Interim results of a study on use of the tethered propellant resupply technique on the space station are summarized. The acceleration produced by a gravity-gradient-stabilized tether can predictably settle propellants and thereby simplify propellant resupply of vehicles when compared to zero-g techniques. Separation of the gas and liquid phases by settling enables performance of liquid acquisition and gas venting without special hardware in the propellant tanks and without special procedures. The primary requirement for propellant transfer is control of liquid sloshing to maintain liquid over the supply tank outlet and gas over the receiver tank vent. Ultimately, the decision to use this technique on the space station may depend upon the capability to adjust depot logistic operations to a tether.  相似文献   

2.
The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.  相似文献   

3.
This Note emphasizes the need, in a space station, of an emergency room, especially equipped with regard to clean air and competent paramedical personnel. The establishment of some degree of artificial gravity is desirable.  相似文献   

4.
Spacelab permits investigation in new seicntific disciplines like material processing, life sciences, chemistry, etc. The large mass and volume capabilities of Spacelab offer better possibilities for some areas of traditional space sciences like infrared astronomy, multi-spectral solar observations and large instruments for astronomical observations.Since free-flyers will require normally a new spacecraft development for each mission, the reusability of space qualified components and experiments will be a significant cost reduction factor over a long period. In the early phase of Spacelab utilisation, however, the scaling factor introduced by Spacelab utilisation, however, the scaling factor introduced by Spacelab results in higher payload development costs than originally appreciated.The costs of Spacelab utilisation are computed and compared with those of conventional free-flying satellites. The mission implementation costs and experiment development costs are shown for both cases. The Spacelab mission implementation costs are subdivided into NASA charges for the Standard Shuttle Mission, NASA charges to fly and operate Spacelab, the European costs of Spacelab payload integration and experiment development costs. In order to evaluate and compare mission implementation costs, the simple parameters are adopted of the cost per kg of experiments and the data collection-transmission capability of Shuttle/Spacelab and ESRO/ESA satellites. The mission implementation costs turn out to be very favourable for Spacelab. The experiment development costs, which are not included in the mission implementation costs, are compared for several free flyers with the corresponding development costs for several experiments of the first Spacelab payload. The comparison shows that the cost per kg of Spacelab experiment development is about five times less than of satellite experiments.  相似文献   

5.
This article reviews the three major policy issues likely to arise from an SSP system: environmental safety, frequency allocation and prevention of interference with other frequency-using activities. Supporters of SSP must make sure that their case is heard clearly at the ITU, but they must also do more to promote public awareness of the technology's potential benefits in order to counter inappropriate use of the Precautionary Principle by anti-technology groups. The strengthening of standard-setting groups world-wide will also assist this process.  相似文献   

6.
Meshkov D  Rykova M 《Acta Astronautica》1995,36(8-12):719-726
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the “active” NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity.  相似文献   

7.
Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based “sandwich” module prototypes. The implementation status and testing results of the prototypes are reviewed.  相似文献   

8.
Medical aspects of crew safety and life support as well as biomedical investigations form part and parcel of the preparation and conduct of manned space programs. The list of biomedical problems related to these programs is very long. The present paper concentrates on some of them.  相似文献   

9.
The paper describes the basic definition and application of 'Cost Engineering' which means to design a vehicle system for minimum development cost and/or for minimum operations cost. This is important now and for the future since space transportation has become primarily a commercial business in contrast to the past where it has been mainly a subject of military power and national prestige. Several examples are presented for minimum-cost space launch vehicle configurations, such as increasing vehicle size and/or the use of less efficient rocket engines in order to reduce development and operations cost. Further a cost comparison is presented on single-stage (SSTO)-vehicles vs. two-stage launchers which shows that SSTOs have lower development and operations cost although they are larger, respectively have a higher lift-off mass than two-stage vehicles with the same performance. The design of a space tourism-dedicated launch vehicle is an extreme challenge for a cost-engineered vehicle design in order to achieve cost per seat not higher than $50,000. Finally an outlook is presented on the different options for manned Earth-to-Moon transportation modes and vehicles – another most important application of 'cost engineering', taking into account the large cost of such a future venture.  相似文献   

10.
The barrier to low cost space programs has been identified, and we are it. Principal among the causes for escalation of space program costs is the ‘system’ which has evolved to control programs. The ‘system’ includes not only the procedures and documents that constitute the flow of paper, the reviews and approvals necessary to initiate actions, and the entire methodology of the decision-making and approval processes but, necessarily, the people, including political as well as industrial counterparts, who populate these environments. This complex ‘system’ has proliferated so that it now promotes time-taking routines, obstructs prompt action, inhibits decisions, extends schedules and escalates costs. Designed to aid and abet management by supplying information necessary to maintain cognizance of program status the ‘system’ has taken over the role of management. Problems and their solutions must now be addressed to the ‘system’ as aided and abetted by management.Most of the evident causes of program cost problems have long since been recognized. Attacking them will produce second-order effects until management is willing to face up to the internal cost driver.  相似文献   

11.
介绍航天行业标准《航天电子电气产品手工焊接工艺技术要求》的修订内容及修订原因与依据,并对标准的实施提出建议。  相似文献   

12.
The American idea of a Solar Power Satellite was proposed for the first time in 1968 by Peter Glaser in a famous article in Science. This concept has since been the subject of many theoretical studies, and of some limited practical studies (mainly about microwave energy transmission) in the USA with funding from NASA and the Department of Energy (DOE). Some evaluations have been also conducted in Western Europe, particularly within the European Space Agency (ESA). But very little is generally known about the attitude towards SPS of the second main space power: the USSR. Soviet literature on SPS is much less abundant, but it does exist. Very interesting articles on the subject have been written by leading Soviet space experts. Some of these articles are analysed here, and the practical meanings of the ex[ressed opinions, generally very favourable, are investigated in view of the growing Soviet space capability.  相似文献   

13.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

14.
To meet the future needs of energy on Earth, the transmission of solar power from space is being extensively studied. Since the power station will occupy a position in the geostationary orbit and will use radio frequency spectrum for transmission of energy to Earth, the relative benefits of space solar power and space communications should be considered. The resource allocation of orbit-spectrum to a power station requires a sacrifice from space communications as they both utilize similar limited resources. The power station is to energy what communication is to information. While the cost of energy is going up, the cost of information processing, storage, sharing and transmission is decreasing. Also, increased means of communication are used as a measure of energy conservation. With the advent of computer communication and the Large Scale Integrated (LSI) microprocessors, the technique of multiple access, message switching and satellite switching can be cost-effectively combined. The computer-satellite communication will allow information resource sharing among large numbers of users besides the conventional application of space communications. Since space communication means work effectively in many other areas where ultimate energy use and conservation is possible, the space solar power will not be able to compete or substitute on the basis of equality and social benefits. But, as the transmission technology is similar for both areas, the R & D effort for solar power will certainly increase efficiency and reduce cost for space communications.  相似文献   

15.
This report summarizes the findings of a report entitled Can Power from Space Compete? produced for NASA by Resources for the Future (RFF). In considering how well satellite solar power (SSP) is likely to compete in the market for electricity from the present to 2020, it finds that neither perceived shortages of fossil fuel nor climate change factors are likely to be major issues in this time frame. Moreover, the high costs of SSP and possible concerns over public health and national security will continue to constrain its development. This does not mean, however, that R&D into the subject should cease; it may well have a future in the short term when applied to non-terrestrial systems. The full report is available at http://www.rff.org.  相似文献   

16.
From the start of the 20th century, a strong tradition of collaboration has developed in the physical sciences. World War II and the following period changed this situation with a quickening of the pace of application. Thus, while basic research continues to benefit from collaboration among scientists worldwide, the increasingly complex background in which science evolves, through higher implementation costs and more difficult approval processes, renders collaboration among nations ever more pressing. Space science, with its comparatively high access cost but large fundamental importance, substantial public appeal and outstanding ability to motivate young people, shares this need. This article focuses on a recent ESSC-ESF study undertaken to improve the effectiveness of such cooperative efforts. Related findings and recommendations are presented along with a proposed operational structure for their implementation.  相似文献   

17.
This paper describes and analyses the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described which transport power ranging from 1250 to 5000 MW and distribute it to receiving sites at transcontinental distances. It is shown that, when offering electricity at prices competitive to those prevalent in developed cities in the USA, that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan, where the prevalent electricity prices are much higher an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than $1 per installed watt, contributing less than 0.02 $ to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 0.30 $, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.  相似文献   

18.
This paper describes and analyzes the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described and analyzed which transport power ranging from 1,250 megawatts to 5,000 megawatts, and distribute it to receiving sites at transcontinental distances.

Two classes of systems are discussed—those with a single reflector and delivering all the power to a single rectenna, and a second type which has multiple reflectors and distributes it to 10 rectenna sites, sharing power among them. It is shown that when offering electricity at prices competitive to those prevalent in developed cities in the US that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan where the prevalent electricity prices are much greater, that an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely.

The paper shows that the capital investment required for the system can be less than $1 per installed watt, contributing less than 0.02 $/KW-hr to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 030 $/kW-hr, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.  相似文献   


19.
This paper explores the concept of using electrostatic forces for deployment of gossamer space structures. The Electrostatically Inflated Membrane Structure (EIMS) uses two conducting membranes that are interconnected through membrane ribs. An absolute electrostatic charge is applied to the structure through active charge emission. This causes repulsion between layers of lightweight membranes that inflates the EIMS system and tensions the membranes. Assuming positive tensions, the EIMS system is modeled as a rigid system. Typical orbital perturbations are considered such as solar radiation pressure, differential gravity, and atmospheric drag which may compress the structure leading to shape destabilization. Restricting the analysis in this paper to flat membranes, the minimum potentials required to exactly compensate for the worst case scenario of differential solar radiation pressure at geostationary altitudes are estimated to be on the order of hundreds of volts. In low Earth orbit, voltage magnitudes of several kilovolts are required to reach an inflation pressure to offset the normal compressive drag pressure.  相似文献   

20.
空间行波管放大器是通信、导航、数传等卫星中重要的功率放大部件。行波管电源是其重要组成部分,在接近50多年的行波管电源研发和制造历史中,行波管电源总体向着高效率、小体积、轻重量、高功率的方向不断发展。提出一种新型大功率高效率空间行波管电源,采用Buck+推挽两级式拓扑结构,低压采用一种新型Buck变换器,通过无损缓冲的方式,实现了Buck变换器各个开关管的软开关;高压采用谐振推挽的拓扑结构,实现了开关管的软开关,使行波管电源效率达到了94%,并在一台500W的样机中进行了实验验证,使行波管电源的体积、重量和效率指标得到进一步提升,为行放电源的小型化、高效率奠定了坚实的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号