首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The various types of converter are described, and the history of resonant power supplies is briefly sketched. The differences between pulse-width-modulated (PWM) switch mode power supplies and resonant power supplies are discussed. Single-switch, multiple-switch, and series and parallel resonant converters are examined. The control of resonant converters is addressed. Hardware is briefly considered  相似文献   

2.
In this paper, the small signal analysis of the LCC-type parallel resonant converter (LCC-PRC) operating in the continuous conduction mode is given. This analysis is based on both the state-plane diagram, which has been successfully used to obtain the steady state response for resonant converters, and the Taylor series expansion. Applying perturbation directly to the steady state trajectory, a discrete small signal model for the converter can be derived in terns of the input voltage, switching frequency, and the converter state variables. Based on this analysis, closed-loop form solutions for the input-to-output and control-to-output transfer functions are derived. It is shown that the theoretical and computer simulation results are in full agreement  相似文献   

3.
A constant-frequency diode-clamped series resonant converter (CFCSRC) is proposed as a solution to problems associated with frequency-controlled resonant converters. This converter has two resonant frequencies, and control is achieved by varying the relative time spent at each switching frequency. Two zero-current-switching (ZCS) modes are examined and plotted in the output plane. An equation is given for the boundary between the two ZCS modes, as well as an expression for the boundary between ZCS and non-ZCS operation; both are plotted in the output plane. The output equation for the main mode is shown to be hyperbolic. Converter peak voltages limited to the input voltages, and peak currents are less than those of the frequency-controlled clamped series resonant converter over a large operating range. Data from a prototype converter are compared with theoretical data and are shown to be in good agreement with the theoretical model  相似文献   

4.
A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.  相似文献   

5.
Because of their reduced switching losses, allowing a higher operating frequency, dc-to-dc resonant converters have been used extensively in the design of smaller size and lighter weight power supplies. The steady state and dynamic behavior of both the conventional series and parallel resonant converters have been thoroughly analyzed and small-signal models around given nominal operating points have been obtained. These models have been used in the past to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and this could lead to instability in the face of component or load changes. Moreover, prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial and error approach In this paper we use μ-synthesis to design a robust controller for a series resonant converter (SRC). In addition to robust stability the design objectives include rejection of disturbances at the converter input while keeping the control input and the settling time within values compatible with a practical implementation  相似文献   

6.
A frequency-domain steady-state analysis is given for a series-parallel resonant converter (SPRC) operating in the continuous conduction mode (CCM) using Fourier series techniques. Equations for performance parameters are derived under steady-state conditions to provide simple design tools. The topology of the SPRC combines the advantageous properties of both the series resonant converter (SRC) and the parallel resonant converter (PRC). The key results of the work are: a novel half-wave rectifier SPRC, conditions for obtaining high part-load efficiency; and several boundary frequencies and limiting conditions such as the capacitive/inductive load boundary and open-circuit and short-circuit cases. Experimental results measured for an 80-W converter above the resonance at different load resistances and input voltages show excellent agreement with the theoretical performance predicted by the equations  相似文献   

7.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

8.
Analysis based on the state-plane diagram is given for series resonant converters operating in the frequency range 0.5 ? fs/fo ? 1.0. When the voltages and currents in the converter are normalized, design parameters take on special geometric meanings in the normalized state diagram. Examples of converter design using graphical methods are given for the cases of ? and ? control. Control characteristics of the converter operating in the continuous conduction mode are derived. The concept of the energy reflection coefficient is introduced as a measure of power transfer efficiency in the converter design.  相似文献   

9.
Because of their tolerance of transformer nonidealities, resonant converters are considered to be well-suited to high-voltage applications. The series and parallel resonant topologies, as well as a newly discovered hybrid resonant topology are compared for high-voltage applications. Design criteria which incorporate transformer nonidealities are developed and used in the construction of high voltage prototypes for each topology. It is found that the parallel topology leads to the lowest peak switch current and the most ideal behavior  相似文献   

10.
A high-frequency (HF) link parallel resonant DC/DC converter operating in the lagging power factor mode with the resonating capacitor on the secondary side of the HF transformer is analyzed using a state-space approach. Closed-form solutions (except for the duration of diode conduction) are obtained for steady-state conditions, and design curves are obtained. A method of obtaining optimum operating point under certain constraints is developed and is used as the basis of a simple design procedure. A theoretical study comparing the performance of three MOSFET-based 1-kW converters with different transformer turn ratios under load changes from rated-load to 10% load is carried out. Experimental results obtained with these converters with different transformer turn ratios are also presented  相似文献   

11.
For a given output voltage and power, the peak resonant capacitor voltage and peak inductor and switch currents of the series resonant converter depend strongly on the choice of transformer turns ratio and of tank inductance and capacitance. In this paper the particular component values which result in the smallest component stresses are determined, and a simple design strategy is developed. The procedure is illustrated for an off-line 200 W, 5 V application, and it is shown that an incorrect choice of component values can result in significantly higher component stresses than are necessary.  相似文献   

12.
An efficient and practical method for steady-state design of an LLC-type parallel resonant dc/dc converter (LLC-PRC) is presented. In general, the output characteristic curves of LLC-PRC can be obtained by multiplying the output curves of the LC-type parallel resonant converter (LC-PRC) by a ratio of the parallel and series inductances. The peak voltage and current stresses on the resonant elements also depend on the same ratio. The LLC-PRC with a filter inductor is examined for two conduction modes, continuous and discontinuous capacitor voltage conduction modes, to show the effect of the inductance ratio. A means to use the derived equations to obtain the zero current switching (ZCS) is given. Also, a design procedure, along with design examples, is given to illustrate the use of the equations and characteristic curves. An experimental LLC-PRC is built to ensure the validity of the equations and design examples  相似文献   

13.
The state-plane analysis technique is established for the zero-voltage-switching resonant DC/DC power converter family of topologies, namely the buck, boost, buck-boost, Cuk, sepic, and dual-sepic converters. The state plane provides a compression of information, which allows the designer to examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, modes of resonant converter operation are examined. Expressions are derived for the switching frequencies at the boundaries between these modes and at the boundary of energy conversion  相似文献   

14.
15.
In a recent paper by C.Q. Lee et al. (ibid., vol.25, no.6, p. 844-7, Nov. 1989), the authors analyzed a DC-DC converter that they termed the LLC-type PRC (parallel resonant converter). Its resonant network contains three active components-two inductances and a parallel capacitance-and as a consequence the converter might be expected to have third-order dynamics. But Lee et al. employed a matrix transformation to show that the behavior of the circuit may be represented as a state-plane trajectory, as for a second-order circuit. The purpose of this contribution is to show that the converter has a zero-frequency eigenvalue, associated with undesirable circulating DC. The second-order dynamics exhibited by the third-order converter are explained by an application of Thevenin's theorem. Some aerospace applications of the LLC-type parallel resonant converter (PRC) are discussed. In their reply, the authors show that the circulating direct current does not exist in the practical converter circuit  相似文献   

16.
A new resonant mode power amplifier design is described which has a number of advantages over the power amplifiers available today. In particular, it has low or no EMI because of the nature of its operation. The new amplifier design is based upon a resonant mode dc-dc converter used in a push-pull configuration. All the advantages of the resonant mode power converters, such as high efficiency, small size and weight, excellent dynamic performance, low or no EMI (compared to PWM switch mode power converter), etc., are present in this new design.  相似文献   

17.
A buck converter operating at constant switching frequency, whose active switches and recovery diode commutate at zero-voltage-switching (ZVS), with zero capacitive turn-on losses, is proposed. By using the parasitic capacitances of the switches as resonant capacitors, multiresonance is created. The resonant stage takes place only after the resonant inductor has been discharged, thus avoiding a resonant current peak; the devices are subjected to the same stresses as their counterparts in conventional hard-switching converters. A high efficiency is obtained.  相似文献   

18.
A new class of AC/DC converter topologies (Type-1 converters) is described, suitable for use in an advanced single-phase sine-wave voltage, high-frequency power distribution system, of the type that was proposed for a 20 kHz Space Station primary electrical power distribution system. The converter comprises a transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input AC voltage source is converted into a sinusoidal current source using the resonant network. The output of this current source is rectified by the diode rectifier and is controlled by the current controller. The controlled rectified current is then filtered by the output filter to obtain a constant voltage across the load. Three distinct converter topologies, Type-1A, Type-1B, and Type 1-C, are described, and their performance characteristics are presented. All three types have a close-to-unity rated power factor (greater than 0.98), low total harmonic distortion in input current (less than 5%), and high conversion efficiency (greater than 96%)  相似文献   

19.
The design and implementation of a multimodule parallel series-loaded resonant (SLR) converter system is presented. The SLR converter to be paralleled is operated in the n=2 discontinuous mode (DCM). Its dc analysis and dynamic modeling are made. In parallel operation, an average control technique is proposed to compensate the mismatch in current control characteristics of each parallel converter. Good dynamic and static current sharing characteristics are obtained. In addition, to obtain good output voltage regulating control performance, a design procedure is presented to find the parameters of feedback voltage controller according to the prescribed specifications  相似文献   

20.
A series-parallel resonant converter employing (LC)(LC)-type tank circuit operating in lagging power factor (PF) mode is presented and analyzed using complex ac circuit analysis. Design curves are obtained and the converter is optimized under certain constraints. Detailed Space Integrated Control Experiment (SPICE) simulation results are presented to evaluate the performance of the designed converter under varying load conditions. Results obtained from an experimental converter are also presented. The results obtained from the theory, SPICE simulation, and the experimental converter are compared. The proposed converter has high efficiency from full load to very light load (<10%). Switching frequency variation required for a wide change in the load (near load open circuit to full load) is narrow compared with the series resonant converter (SRC)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号