首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纯净空气来流下的超声速燃烧实验装置及其初步实验结果   总被引:4,自引:0,他引:4  
采用电阻加热的连续式实验设备,在燃烧室进口气流为高温纯净空气、马赫数Ma=2、总温Tt=1000K,总压Pt=0.8MPa条件下,进行了不同当量油气比的氢和乙烯燃料的超声速燃烧室直连式实验.采用从壁面垂直于主流喷射燃料和以氢作为先锋火焰,实现了乙烯燃料的可靠点火和稳定燃烧.实验测量了燃烧室的壁面压力、空气流量、燃料喷射压力、喷管进口总温等参数,并拍摄了燃烧室出口火焰.本文实验采用的电阻加热设备具有实验介质无污染、稳定运行时间长、工作性能稳定、成本低、操作简单等优点,其主要部件电阻加热器出口的最高温度可达600~1000K,对应的流量为1.5~0.73kg/s、加热器功率为750KW.  相似文献   

2.
对有无楔板超燃冲压发动机模型内横向氢气喷流超声速燃烧流场进行了数值模拟,分析了进口马赫数对超声速燃烧流场特性及特征参数分布的影响特性。采用有限体积法求解多组元Navier-Stokes(N-S)方程,对不同进口马赫数下的燃烧流场进行了数值模拟,细致对比了流场激波结构、喷流穿透深度、燃烧阵面,燃烧效率及总压恢复系数等参数随进口条件的变化特征。结果表明:无论是否存在楔板结构,喷口后流场压强均随着进口马赫数的增加而减小,并且随进口马赫数的增加,氢气喷流穿透深度减小,楔板对喷流穿透深度基本无影响。较无楔板结构而言,设置楔板结构可以缓解燃烧室内流场对马赫数变化的敏感度,使燃烧更为稳定。在同一进口马赫数条件下,楔板布局有明显的促燃作用及激波点火效果,在一定程度上可增加此类发动机工作的马赫数范围,但以总压恢复系数略微降低为代价。  相似文献   

3.
H2/Air在两种不同的燃烧室尺寸、七种燃烧喷注方式下进行了系统的超声速燃烧实验。实验空气的滞止温度在2000K左右,滞止压力1~1.4MPa,总流量2kg/s,燃烧室进口马赫数2.5,可以模拟飞行M数为7的超燃冲压发动机中的燃烧工况。新开发的一维超声速燃烧程序SSC-1可以估算出燃烧室内的流场参数、燃烧效率和总压损失。计算结果与实验进行了比较,发现较好的一致。实验结果表明,利用垂直喷射,燃烧效率可以超过80%,同时不引起严重的总压损失。由燃烧室壁面静压分布与燃烧效率的分析发现,燃烧室燃料注射位置应避免过于集中,宜分散按规律分布,使燃烧室静压分布尽量平直以获得高燃烧效率。  相似文献   

4.
在非结构网格上对二维高超声速化学非平衡粘性绕流进行了数值模拟,并应用此方法对涵道构型高超声速减阻特性进行了数值分析。空间离散采用VanLeer逆风通量分裂格式,时间推进采用显式的Runge—Kutta格式。化学非平衡动力学模型为五组元五反应模型,对化学反应源项进行了点隐式格式处理,温度场的计算采用牛顿迭代法。分别对二维类弹头体涵道构型、二维半圆柱模型的高超声速绕流流场进行了数值模拟,得到了数值结果,并与完全气体绕流计算结果进行了对比分析。结果表明本文方法可以应用于高超声速绕流计算,并且涵道构型具有高超声速减阻特性。  相似文献   

5.
采用电阻加热燃烧室直连式试验台和甲烷燃烧加热燃烧室直连式试验台,开展了来流加热方式对煤油燃料超声速燃烧室燃烧性能的影响研究。在对比试验中,燃烧室入口纯净空气来流和污染空气来流均保持总温840K、总压820kPa和马赫数2.0的条件。利用高速摄像技术拍摄了煤油燃烧可见光图像,经分析处理得到了煤油燃烧火焰向主流的传播角度。对比试验结果显示:与电阻加热试验来流相比,甲烷燃烧加热来流的燃烧室壁面压力峰值下降了3.1%~6.9%,煤油燃烧可见光火焰向主流的传播角度缩小了7.1%~12.4%。  相似文献   

6.
为确保氢和氧稳定、完全地燃烧 ,采用临界喷管控制氢氧的质量流率 ,以及同轴环向的预混方式。实验结果表明 :改变氢氧质量流率或尾喷管临界截面积可调节燃气总压 ,建成结构简单且造价低廉的高焓水蒸汽发生器。  相似文献   

7.
航空发动机燃烧室内的燃烧组织是高温高压受限空间内多级旋流复杂流场结构的气动、燃油雾化、蒸发、油气混合和燃烧化学反应多场耦合过程,而其流场特性影响雾化和燃烧过程,从而对燃烧室的燃烧性能具有决定性影响。对燃烧室内复杂强旋流流场组织机理的认识和高精度测试一直是发动机燃烧室研制过程中的难点之一。本文针对光学可视模型燃烧室试验件设计方法及典型发动机燃烧室的流场组织机理和特性进行总结,希望给发动机燃烧室研制过程中光学模型燃烧室试验件的设计提供一定的借鉴,深刻认识目前两类典型的传统旋流杯模型燃烧室和基于分区分级耦合燃烧技术的新型燃烧室的流场特性,促进航空发动机燃烧室的研制。  相似文献   

8.
在直连式脉冲燃烧设备上,开展了模拟Ma4,总温935K 来流参数下的超燃发动机乙烯点火试验。试验利用了火炬点火器和引导氢气的辅助点火方式,实现了乙烯的点火和稳定燃烧。结合壁面压力测量、高速摄影和数值模拟方法,分析点火及火焰传播过程发现:(1)在现有的注油方式下,回流区有利于点火,剪切层和凹槽后部是稳焰的主要区域;(2)点火成功后,影响凹槽稳焰的主要因素为燃料与氧化剂的浓度,剪切层内和凹槽后部持续卷吸氧化剂,因而能够维持稳定的燃烧;(3)凹槽下游注入的燃料发生燃烧造成流道一定程度壅塞,是提升燃烧室压力水平的重要原因,但该处的燃烧不能够稳定,引起燃烧室内压力的振荡,而导致该处不稳定燃烧的2个主要因素为变化的氧含量和较高的流速。  相似文献   

9.
基于有限体积迎风格式对超声速燃烧流场进行了的数值模拟.由于超声速燃烧流场绕流的复杂性,要求对多组分Euler/N-S方程求解的数值模拟方法应具有较高的计算精度及效率.本文引用辅助点方法建立了具有空间二阶精度的van Leer迎风矢通量分裂格式,并应用于超声速燃烧流场绕流的数值模拟.化学反应为氢气/空气十反应模型,采用考虑了化学反应特征时间的当地时间步长显式Runge-Kutta时间推进格式.对钝头体模型爆轰现象、后向台阶氢气喷射及二维内外流超声速燃烧流场模型进行了区域分裂技术的并行计算.计算结果与参考文献作了对比,得到了满意的结果.  相似文献   

10.
煤油 氢双燃料的超声速燃烧室中的自点火和燃烧稳定特性在直联式试验装置上进行了实验研究。实验空气总温 1 650~ 1 980K ,总压基本保持在 1 .8MPa左右 ,燃烧室进口M数为 2 .5。用激光粒度仪测量了在加压下煤油的雾化程度。为了寻找能点燃并维持煤油稳定燃烧的最低氢当量比 ,设计加工了四种不同构型引导火焰与凹稳焰一体腔结构 ,利用氢引导火焰局部地加速煤油的化学反应和凹腔的联合促进作用与优化结合 ,发现在没有强迫点火能源条件下点燃并维持煤油稳定燃烧的最低氢当量比能降低至 0 .0 3。燃烧室的性能用简化的一维计算机程序SSC - 3作了初步估算。在长度 42 5mm的燃烧室中获得了煤油的燃烧效率 50 %。引导火焰凹腔一体化结构对点火特性和性能的影响作了讨论  相似文献   

11.
电弧加热器高温流场激光吸收光谱诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
气流温度和组分粒子数密度是定量评估电弧加热器运行参数和流场品质的关键,常规测试手段难以适应电弧加热器内高温气流的恶劣环境,电弧加热器等离子体气流诊断研究一直缺乏有效手段。本研究应用激光吸收光谱技术,选用原子O(777.19nm)谱线,基于局部热化学平衡等离子体假设,对电弧加热器内高温离解空气(>5000K)试验气流进行在线诊断。试验测得了总焓H0=15.8,17.4MJ/kg 2组工况下,电弧加热器内等离子体气流温度和原子O粒子数密度。2组工况获得平均气流温度分别为5843和6047K,对应高温平衡气流表获得气流温度为5950和6335K。测得加热器运行稳定后2组工况的原子O总粒子数密度在(1.1~1.2)×1018cm-3之间,低能级5S20粒子数密度在(1.0~1.6)×1010cm-3之间,2组工况原子O总粒子数密度的差异与NASA-CEA平衡计算结果一致,验证了电弧加热器气流局部热力学平衡假设的有效性。本研究工作验证了激光吸收光谱技术可作为高焓电弧加热器常规诊断手段。  相似文献   

12.
新一代再入飞行器及空间传输系统需要了解其飞行时的气动问题及热力学问题。数值模拟高空、低密度、高熵及非平衡流动是一具有挑战性的问题。本文针对带座舱飞船高超声速再入大气过程中存在的严重气动加热现象,利用混合网格及Osher逆风格式,数值求解了三维化学非平衡Navier-Stokes方程,其中化学模型是5组分1 7个化学反应的空气化学模型,对带座舱飞船再入高度为40 km和马赫数为2 0 ,1 0的化学非平衡流场进行了数值模拟,给出了迎角为0°和2 0°情况下的各个组分的密度分布、压力等参数,并与量完全气体的计算结果进行了比较。  相似文献   

13.
给出了在ITAM最近投入使用的高超声速脉冲绝热压缩风洞AT-303中进行超燃冲压发动机模型实验的结果.实验马赫数M∞≈8,运行时间τ=50~60 ms,雷诺数范围Re1∞=2.7×106~4.0×107,模型表面的边界层自然转捩.在实验中,模型中有燃料供给:把气态氢以超过化学量比率的空气燃料因子注入到燃烧室.提供了足以发生氢燃料自点燃的流动条件.测量了沿进气道楔型压缩面和整个发动机通道上的纵向压力和热流分布.所获数据与同一模型在热射流风洞IT-302M(实验马赫数M∞≈6,8,运行时间τ=100~120 ms,雷诺数范围Re1∞=(1.3~1.8)×106,进气道压缩面和侧压缩面进行了边界层转捩).结果表明:实验模型发动机在两座风洞中进行实验所获得的流态类型相同.发动机刚刚启动时,在进气道入口及其下游的发动机通道内形成超声速流.注入氢后,首先在燃烧室内形成平均流速是超声速的燃烧流动.之后,在燃烧室出口出现热拥塞现象、在进气道扩压段产生伪激波流态.在两座风洞中进行了进气道和发动机通道的流动特征试验,获得了令人满意的结果.  相似文献   

14.
典型几何和流动参数对高超声速进气道性能的影响   总被引:12,自引:0,他引:12  
用N-S方程模拟了一系列典型二元高超声速进气道内压缩通道及隔离段模型,模拟发现内压缩通道及隔离段增压比、温升比和总压恢复系数等性能参数主要受面积收缩比、内压缩通道收缩角、隔离段长高比等几何参数以及内压缩通道进口马赫数、密度、附面层厚度等流动参数的影响。内收缩比和内收缩通道收缩角的增大都会使压缩增强;隔离段内沿程平均温升比、马赫数和总压恢复系数曲线则均接近平行直线。内压缩通道进口马赫数的增大也会使压缩增强,但较小的进口马赫数可能引起分离,进而增大增压比;而进口密度增大使附面层变薄,对气流的压缩减弱;进口附面层厚度对沿程平均温升比、增压比以及马赫数的影响近似线性。  相似文献   

15.
介绍三维进气道和超声速燃烧冲压式喷气发动机 (SCRAMJET)模型一项实验研究的结果。Scramjet模型由进气道和燃烧室组成 ,此模型组件的设计是为了研究流动结构以获得进气道的特性 ,以及研究燃烧室和进气道、燃料 (氢及碳氢燃料 )点火和燃烧的相互影响。这些试验是在下吹式风洞(M =2 ~ 6,Reunit=( 8~ 54) × 1 0 6)和热射式风洞 (M =6及 7 2 ,Reunit =( 1 0 ~ 32 )× 1 0 6,Tt =1 50 0 ~ 2 50 0K)中进行的。  相似文献   

16.
本文介绍了在北京空气动力研究所炮风洞 M 数为6、7、8的气流中进行具有高温喷流的模型底部热流和压力测量试验的有关试验技术。试验结果表明底部对流热流和压力测量值随外流 M 数增大而减小,他们都大于无外流时的测值。辐射热流不受外流影响。  相似文献   

17.
针对来流马赫数为4.5、6.0和7.0的高超声速平板边界层,取30km高空处的气体参数,壁面为等温、绝热和温度分布等3种不同条件,采用eN方法进行转捩预测。其中,壁面温度分布条件下,在等温壁(冷壁)和绝热壁之间,给出4种流向分布进行分析。取扰动的初始幅值为0.3‰,以幅值达到1.5%作为转捩判断依据。结果表明:当温度为来流温度时,等温壁面条件的转捩位置最靠前,并随马赫数增大更加靠前;绝热壁面条件的转捩位置随马赫数增大而推后;壁面温度分布条件下,在相同时刻,马赫数越大,转捩位置越靠前。相同马赫数下,壁面温度较高者转捩位置较靠后(马赫数为7.0时,不完全满足此规律)。在马赫数为4.5和6.0时,绝热壁面条件转捩由第一模态主导,其余情况主导转捩的都是第二模态。  相似文献   

18.
以Harten标准TVD格式为基础,结合固体火箭燃气射流的特点,以数学方法系统地推导了适合于高温、高压和高速流体流动的数值格式,给出了压力偏导数的合理计算公式;利用化学动力学知识,对火箭燃气射流流场中存在的多组分、含有限速率的化学反应问题进行了论述,阐明了化学反应质量源项的求解方法。以12组分9反应方程模型为例,利用编制的计算程序,对某火箭燃气自由射流流场进行了模拟。通过对结果的分析,肯定了数值格式的正确性。  相似文献   

19.
Roe格式在多组元燃烧流场数值模拟中的应用   总被引:3,自引:2,他引:1  
对Roe通量分裂格式进行了详细讨论,并将其推广应用到基于非结构网格的高超声速多组元燃烧流场的数值模拟中。控制方程采用三维多组元Euler方程,重点针对Roe格式开展研究;考虑到燃烧流场求解过程中出现的刚性问题,对化学反应源项采用点隐式方法处理。对超声速条件下钝头体激波诱导燃烧流场进行了数值模拟,比较分析了3种经典化学动力学模型对流场结构的影响,获得与数值模拟、试验数据相符的结果。结果表明发展的方法可以用于多组元燃烧流场的数值分析,且化学动力学模型的选取直接影响激波诱导燃烧流场中诱导区厚度。  相似文献   

20.
内压缩通道几何参数对高超声速进气道性能的影响   总被引:4,自引:1,他引:4  
用N-S方程模拟了一系列不同收缩比、不同波系配置的内压缩通道内流动,研究了内压收缩通道几何参数对进气道性能的影响,发现对于相同的外压段,内压面积收缩比对进气道内压缩通道温升比、压比和起动性能具有较好的相似规律,且随着内压面积收缩比增加,进气道温升比、压比增加,出口流场畸变下降,起动马赫数增大。通过对相同压比下不同内外压缩比的进气道性能的研究,得到了内外压缩比对进气道效率和起动性能的影响规律,发现压缩程度相同时,进气道效率和起动马赫数均随内外压缩比有先增大后减小再增大的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号